Course Overview

15-213/18-213/15-513: Introduction to Computer Systems
Lecture 1, Aug 28, 2018

Instructors:
Seth Goldstein
Brandon Lucia
Brian Railing
Franz Franchetti

The course that gives CMU its “Zip”!
Instructors: The 1x-x13 Team

15-213
Seth C. Goldstein

18-213
Brandon Lucia

15-513
Brian Railing

18-613
Franz Franchetti
Overview

- **Big Picture**
  - Course theme
  - Five realities
  - How the course fits into the CS/ECE curriculum

- **Education Research and 1x-x13**

- **Academic Integrity**

- **Logistics and Policies**
The Big Picture
Course Theme: (Systems) Knowledge is Power!

- **Systems Knowledge**
  - How hardware (processors, memories, disk drives, network) plus software (operating systems, compilers, libraries, network protocols) combine to support the execution of application programs
  - How you as a programmer can best use these resources

- **Useful outcomes from taking 213/513**
  - Become more effective programmers
    - Able to find and eliminate bugs efficiently
    - Able to understand and tune for program performance
  - Prepare for later “systems” classes in CS & ECE
It’s Important to Understand How Things Work

Why do I need to know this stuff?
- Abstraction is good, but don’t forget reality

Most CS courses emphasize abstraction
- (CE courses less so)
- Abstract data types
- Asymptotic analysis

These abstractions have limits
- Especially in the presence of bugs
- Need to understand details of underlying implementations
- Sometimes the abstract interfaces don’t provide the level of control or performance you need
Great Reality #1:
Ints are not Integers, Floats are not Reals

Example 1: Is $x^2 \geq 0$?

- Float’s: Yes!
- Int’s:
  - $40000 \times 40000 \rightarrow 1600000000$
  - $50000 \times 50000 \rightarrow$?

Example 2: Is $(x + y) + z = x + (y + z)$?

- Unsigned & Signed Int’s: Yes!
- Float’s:
  - $(1e20 + -1e20) + 3.14 \rightarrow 3.14$
  - $1e20 + (-1e20 + 3.14) \rightarrow ??$

Source: xkcd.com/571
Computer Arithmetic

■ Does not generate random values
  ▪ Arithmetic operations have important mathematical properties

■ Cannot assume all “usual” mathematical properties
  ▪ Due to finiteness of representations
  ▪ Integer operations satisfy “ring” properties
    ▪ Commutativity, associativity, distributivity
  ▪ Floating point operations satisfy “ordering” properties
    ▪ Monotonicity, values of signs

■ Observation
  ▪ Need to understand which abstractions apply in which contexts
  ▪ Important issues for computer architects, compiler writers and serious application programmers
Great Reality #2: You’ve Got to Know Assembly

- Chances are, you’ll never write programs in assembly
  - Compilers are much better & more patient than you are

- But: Understanding assembly is key to machine-level execution model
  - Behavior of programs in presence of bugs
    - High-level language models break down
  - Tuning program performance
    - Understand optimizations done / not done by the compiler
    - Understanding sources of program inefficiency
  - Implementing system software
    - Compiler has machine code as target
    - Operating systems must manage process state
  - Creating / fighting malware
    - x86 assembly is the language of choice!
Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

- Memory is not unbounded
  - It must be allocated and managed
  - Many applications are memory dominated

- Memory referencing bugs especially pernicious
  - Effects are distant in both time and space

- Memory performance is not uniform
  - Cache and virtual memory effects can greatly affect program performance
  - Adapting program to characteristics of memory system can lead to major speed improvements
Memory Referencing Bug Example

typedef struct {
    int a[2];
    double d;
} struct_t;

double fun(int i) {
    volatile struct_t s;
    s.d = 3.14;
    s.a[i] = 1073741824; /* Possibly out of bounds */
    return s.d;
}

fun(0) --> 3.14
fun(1) --> 3.14
fun(2) --> 3.1399998664856
fun(3) --> 2.00000061035156
fun(4) --> 3.14
fun(6) --> Segmentation fault

- Result is system specific
Memory Referencing Bug Example

typedef struct {
    int a[2];
    double d;
} struct_t;

fun(0) --> 3.14
fun(1) --> 3.14
fun(2) --> 3.1399998664856
fun(3) --> 2.00000061035156
fun(4) --> 3.14
fun(6) --> Segmentation fault

Explanation:

<table>
<thead>
<tr>
<th>Critical State</th>
<th>Location accessed by fun(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>d7 ... d4</td>
</tr>
<tr>
<td>2</td>
<td>d3 ... d0</td>
</tr>
<tr>
<td>1</td>
<td>a[1]</td>
</tr>
<tr>
<td>0</td>
<td>a[0]</td>
</tr>
</tbody>
</table>

struct_t
Memory Referencing Errors

- **C and C++ do not provide any memory protection**
  - Out of bounds array references
  - Invalid pointer values
  - Abuses of malloc/free

- **Can lead to nasty bugs**
  - Whether or not bug has any effect depends on system and compiler
  - Action at a distance
    - Corrupted object logically unrelated to one being accessed
    - Effect of bug may be first observed long after it is generated

- **How can I deal with this?**
  - Program in Java, Ruby, Python, ML, ...
  - Understand what possible interactions may occur
  - Use or develop tools to detect referencing errors (e.g. Valgrind)
Great Reality #4: There’s more to performance than asymptotic complexity

- Constant factors matter too!
- And even exact op count does not predict performance
  - Easily see 10:1 performance range depending on how code written
  - Must optimize at multiple levels: algorithm, data representations, procedures, and loops
- Must understand system to optimize performance
  - How programs compiled and executed
  - How to measure program performance and identify bottlenecks
  - How to improve performance without destroying code modularity and generality
Memory System Performance Example

Hierarchical memory organization

Performance depends on access patterns
  - Including how step through multi-dimensional array

```c
void copyji(int src[2048][2048],
            int dst[2048][2048])
{
    int i,j;
    for (i = 0; i < 2048; i++)
        for (j = 0; j < 2048; j++)
            dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
            int dst[2048][2048])
{
    int i,j;
    for (j = 0; j < 2048; j++)
        for (i = 0; i < 2048; i++)
            dst[i][j] = src[i][j];
}
```

4.3ms

81.8ms

2.0 GHz Intel Core i7 Haswell
Why The Performance Differs

- **copyij**

- **copyji**
Great Reality #5: Computers do more than execute programs

- They need to get data in and out
  - I/O system critical to program reliability and performance

- They communicate with each other over networks
  - Many system-level issues arise in presence of network
    - Concurrent operations by autonomous processes
    - Coping with unreliable media
    - Cross platform compatibility
    - Complex performance issues
Course Perspective

- Most Systems Courses are Builder-Centric
  - Computer Architecture
    - Design pipelined processor in Verilog
  - Operating Systems
    - Implement sample portions of operating system
  - Compilers
    - Write compiler for simple language
  - Networking
    - Implement and simulate network protocols
Course Perspective (Cont.)

Our Course is Programmer-Centric

- By knowing more about the underlying system, you can be more effective as a programmer
- Enable you to
  - Write programs that are more reliable and efficient
  - Incorporate features that require hooks into OS
    - E.g., concurrency, signal handlers
- Cover material in this course that you won’t see elsewhere
- Not just a course for dedicated hackers
  - We bring out the hidden hacker in everyone!
Role within CS/ECE Curriculum

Foundation of Computer Systems
Underlying principles for hardware, software, and networking

213/513

CS Systems
• 15-319 Cloud Computing
• 15-330 Computer Security
• 15-410 Operating Systems
• 15-411 Compiler Design
• 15-415 Database Applications
• 15-418 Parallel Computing
• 15-440 Distributed Systems
• 15-441 Computer Networks
• 15-445 Database Systems

ECE Systems
• 18-349 Computer Security
• 18-349 Intro to Embedded Systems
• 18-441 Computer Networks
• 18-447 Computer Architecture
• 18-452 Wireless Networking
• 18-451 Cyberphysical Systems

CS Graphics
• 15-462 Computer Graphics
• 15-463 Comp. Photography

CS 122 Imperative Programming
Academic Integrity

Please pay close attention, especially if this is your first semester at CMU

Carefully review policy:

www.cs.cmu.edu/~213/academicintegrity.html
Cheating/Plagiarism: Description

■ Unauthorized use of information
  - **Borrowing code:** by copying, retyping, *looking at* a file
  - **Describing:** verbal description of code from one person to another
    - *Even if you just describe/discuss how to put together CS:APP code snippets to solve the problem*
  - **Searching the Web** for solutions, discussions, tutorials, blogs, other universities’ 213 instances,... in English or any other language
  - **Copying code** from a previous course or online solution
  - **Reusing your code** from a previous semester (here or elsewhere)
    - *If you take the course this semester, all work has to be done this semester (unless you have special permission from the instructors)*
Cheating/Plagiarism: Description (cont.)

- Unauthorized supplying of information
  - **Providing copy:** Giving a copy of a file to someone
  - **Providing access:**
    - Putting material in unprotected directory
    - Putting material in unprotected code repository (e.g., Github)
    - Or, letting protections expire
  - **Applies to this term and the future**
    - There is no statute of limitations for academic integrity violations

- Collaborations beyond high-level, strategic advice
  - Anything more than block diagram or a few words
  - Code / pseudo-code is NOT high level
  - Coaching, arranging blocks of allowed code is NOT high level
  - Code-level debugging is NOT high level
Cheating/Plagiarism: Description

■ **What is NOT cheating?**
  - Explaining how to use systems or tools
  - Helping others with *high-level* design issues
    - High means very high
  - Using code supplied by us
    - Starter code, class examples
  - Using code from the CS:APP web site

■ **Attribution Requirements**
  - Starter code: No
  - Other allowed code (course, CS:APP): Yes
    - Indicate source, beginning and end

■ **See the course syllabus for details.**
  - Ignorance is not an excuse
Cheating: Consequences

- **Penalty for cheating:**
  - **Best case:** -100% for assignment
    - *You would be better off to turn in nothing*
  - **Worst case:** Removal from course with failing grade
    - *This is the default*
  - Permanent mark on your record
  - Loss of respect by you, the instructors and your colleagues
  - *If you do cheat – come clean asap!*

- **Detection of cheating:**
  - We have sophisticated tools for detecting code plagiarism
  - In Fall 2015, 20 students were caught cheating and failed the course.
    - Some were **expelled** from the University
  - In January 2016, 11 students were penalized for cheating violations that occurred as far back as Spring 2014.
  - In Spring 2017 we caught people looking at Chinese-language blogs; 30+ AIV letters

- **Don’t do it!**
  - Manage your time carefully
  - Ask the staff for help when you get stuck
Some Concrete Examples:

■ This is Cheating:
  ▪ Searching the internet with the phrase 15-213, 15213, 213, 18213, malloclab, etc.
    ▪ That’s right, just entering it in a search engine
  ▪ Looking at someone’s code on the computer next to yours
  ▪ Giving your code to someone else, now or in the future
  ▪ Posting your code in a publicly accessible place on the Internet, now or in the future
  ▪ Hacking the course infrastructure

■ This is OK (and encouraged):
  ▪ Googling a man page for fputs
  ▪ Asking a friend for help with gdb (but not with your code)
  ▪ Asking a TA or course instructor for help, showing them your code, ...
  ▪ Using code examples from book (with attribution)
  ▪ Talking about a (high-level) approach to the lab with a classmate
How it Feels: Student and Instructor

- Fred is desperate. He can’t get his code to work and the deadline is drawing near. In panic and frustration, he searches the web and finds a solution posted by a student at U. Oklahoma on Github. He carefully strips out the comments and inserts his own. He changes the names of the variables and functions. Phew! Got it done!

- The course staff run checking tools that compare all submitted solutions to the solutions from this and other semesters, along with ones that are on the Web.
  - Remember: We are as good at web searching as you are

- Meanwhile, Fred has had an uneasy feeling: Will I get away with it? Why does my conscience bother me?

- Fred gets email from an instructor: “Please see me tomorrow at 9:30 am.”
  - Fred does not sleep well that night
The instructor feels frustrated. His job is to help students learn, not to be police. Every hour he spends looking at code for cheating is time that he cannot spend providing help to students. But, these cases can’t be overlooked.

At the meeting:
- Instructor: “Explain why your code looks so much like the code on Github.”
- Fred: “Gee, I don’t know. I guess all solutions look pretty much alike.”
- Instructor: “I don’t believe you. I am going to file an academic integrity violation.”
  - Fred will have the right to appeal, but the instructor does not need him to admit his guilt in order to penalize him.

Consequences
- Fred (most likely) will be given a failing grade for the course
- Fred will be reported to the university
- A second AIV will lead to a disciplinary hearing
- Fred will go through the rest of his life carrying a burden of shame
- The instructor will experience a combination of betrayal and distress
Why It’s a Big Deal

- **This material is best learned by doing**
  - Even though that can, at times, be difficult and frustrating
  - Starting with a copy of a program and then tweaking it is very different from writing from scratch
    - Planning, designing, organizing a program are important skills

- **We are the gateway to other system courses**
  - Want to make sure everyone completing the course has mastered the material

- **Industry appreciates the value of this course**
  - We want to make sure anyone claiming to have taken the course is prepared for the real world

- **Working in Teams and Collaboration is an Important Skill**
  - But only if team members have solid foundations
  - This course is about foundations, not teamwork
A Scenario: Cheating or Not?

Alice is working on malloc lab and is just plain stuck. Her code is seg faulting and she doesn't know why. It is only 2 days until malloc lab is due and she has 3 other assignments due this same week. She is in the cluster.

Bob is sitting next to her. He is pretty much done.

Sitting next to Bob is Charlie. He is also stuck.

1. Charlie gets up for a break and Bob makes a printout of his own code and leaves it on Charlie’s chair.
   - Who cheated: Charlie?   Bob?

2. Charlie finds the copy of Bob’s malloc code, looks it over, and then copies one function, but changes the names of all the variables.
   - Who cheated: Charlie?   Bob?
Another Scenario

Alice is working on malloc lab and is just plain stuck. Her code is seg faulting and she doesn't know why. It is only 2 days until malloc lab is due and she has 3 other assignments due this same week. She is in the cluster.

Bob is sitting next to her. He is pretty much done.

Sitting next to Bob is Charlie. He is also stuck.

1. Bob offers to help Alice and they go over her code together.
   - Who cheated: Bob? Alice?

2. Bob gets up to go to the bathroom and Charlie looks over at his screen to see how Bob implemented his free list.
   - Who cheated: Charlie? Bob?
Another Scenario (cont.)

3. Alice is having trouble with GDB. She asks Bob how to set a breakpoint, and he shows her.
   - Who cheated: Bob? Alice?

4. Charlie goes to a TA and asks for help
   - Who cheated: Charlie?

If you are uncertain which of these constitutes cheating, and which do not, please read the syllabus carefully. If you’re still uncertain, ask one of the staff.
Version Control: Your Good Friend

- **We will be using Github Education**
  - Assignment distribution
  - Your workspace
    - Use your course account, rather than a personal Github account

- **Use as you should a version server**
  - Commit early and often
  - Document your commits
  - Missing GIT history can count against you

- **How we use it**
  - If we suspect academic integrity issues, we can see if commit history looks reasonable.
    - Steady, consistent, and sustained work
    - It can serve as your character witness
How to Avoid AIVs

- **Start early**
- **Don’t rely on marathon programming sessions**
  - Your brain works better in small bursts of activity
  - Ideas / solutions will come to mind while you’re doing other things
- **Plan for stumbling blocks**
  - Assignment is harder than you expected
  - Code doesn’t work
  - Bugs hard to track down
  - Life gets in the way
    - Minor health issues
    - Unanticipated events
Logistics
Instructors

Seth C. Goldstein  Brandon Lucia

15-213/18-213

Brian Railing  Franz Franchetti

15-513  18-613
15-213/18-213, 15-513, and 18-613

- **15-213/18-213**
  - Only undergraduates
  - Live lectures
    - In-class quizzes via Canvas
    - Welcome to attend live lectures (613) when space is available
  - Recitations

- **15-513**
  - Other Masters students
  - Lectures by video
    - Welcome to attend live lectures (213 or 613) when space is available

- **18-613**
  - Combined Live lectures (at noon) and video lectures
  - Welcome to attend live lectures (213) when space is available
  - Recitations
  - An extra lab & exam questions

- **Everything else is the same for all the courses**
Textbooks

■ Randal E. Bryant and David R. O’Hallaron,
  ▪ [http://csapp.cs.cmu.edu](http://csapp.cs.cmu.edu)
  ▪ This book really matters for the course!
    ▪ How to solve labs
    ▪ Practice problems typical of exam problems
  ▪ Electronic editions available *(Don’t get paperback version!)*
  ▪ On reserve in Sorrells Library

■ Brian Kernighan and Dennis Ritchie,
  ▪ Still the best book about C, from the originators
  ▪ Even though it does not cover more recent extensions of C
  ▪ On reserve in Sorrells Library
Course Components

- **Lectures**
  - Higher level concepts
  - 15-213/18-213: Will run in-class quizzes via Canvas
    - Your performance could tilt you to a higher grade if it’s a borderline case.

- **Labs (8)**
  - The heart of the course
  - 1-2+ weeks each
  - Provide in-depth understanding of an aspect of systems
  - Programming and measurement

- **Problem Sets**
  - Exam-like problems assigned on Tuesday, Due on Sunday of every week

- **Exams (midterm + final)**
  - Test your understanding of concepts & mathematical principles
Getting Help

■ Class Web pages:
  ▪ [http://www.cs.cmu.edu/~213](http://www.cs.cmu.edu/~213)
    ▪ Complete schedule of lectures, exams, and assignments
    ▪ Copies of lectures, assignments, exams, solutions
    ▪ FAQ

■ Piazza
  ▪ Best place for questions about assignments
  ▪ By default, your posts will be private
  ▪ We will fill the FAQ and Piazza with answers to common questions

■ Canvas
  ▪ 15/18-213: In-class quizzes
  ▪ Everyone: TPZ, piazza, and videos
Getting Help

■ Email
  ▪ Send email to individual instructors or TAs only to schedule appointments

■ Office hours (starting Tue Jan 22):
  ▪ TAs: SMTWR, 5:00–9:00pm, WeH 5207 [Thursdays are 5:30–9:00]
  ▪ We may hold office hours on Fri/Sat when Labs are due
  ▪ Instructors: See course home page

■ Walk-in Tutoring
  ▪ Details TBA. Will put information on class webpage.

■ 1:1 Appointments
  ▪ You can schedule 1:1 appointments with any of the teaching staff
213 Student HowTo

- Attend Lectures
- Attend Recitations and boot camps
- Start labs early (really) and use GIT properly
- TA office hours: we need to manage load and waiting time
  - lab-related concrete questions
  - must write them down before getting help
  - Time slots
- Faculty Office Hours
  - Grading, special cases, issues
  - Conceptual and longer questions
  - Open discussions
  - Please stop by
Policies: Labs, Problem Sets, and Exams

■ Work groups
  ▪ You must work alone on everything: labs, problem sets, and exams

■ Lab Handins
  ▪ Labs due at 11:59pm
  ▪ Electronic handins using Autolab (no exceptions!)

■ Problem Sets
  ▪ Will be assigned online using the exam server
  ▪ Due on Sunday at 11:59 each week, no late days

■ Exams
  ▪ Exams will be online in network-isolated clusters
  ▪ Held over multiple days. Self-scheduled; just sign up!

■ Appealing grades
  ▪ Exams & Problem Sets: Request via exam server
  ▪ Labs: via detailed private post to Piazza within 7 days of completion of grading
  ▪ Follow formal procedure described in syllabus
Facilities

- Labs will use the Intel Computer Systems Cluster
  - The “shark machines”
  - `linux> ssh shark.ics.cs.cmu.edu`

- 21 servers donated by Intel for 213/513
  - 10 student machines (for student logins)
  - 1 head node (for instructor logins)
  - 10 grading machines (for autograding)

- Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1
- Rack-mounted in Gates machine room
- Login using your Andrew ID and password
Timeliness

- **Grace days (for labs)**
  - 5 grace days for the semester
  - Limit of 0, 1, or 2 grace days per lab used automatically
  - Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

- **Lateness penalties (for labs)**
  - Once grace day(s) used up, get penalized 15% per day
  - No handins later than 3 days after due date

- **Catastrophic events**
  - Major illness, death in family, …
  - Formulate a plan (with your academic advisor) to get back on track

- **Advice**
  - Once you start running late, it’s really hard to catch up
  - Try to save your grace days until the last few labs

- **Problem Sets have no late days**

Really, Really Hard!
Other Rules of the Lecture Hall

- Laptops: permitted

- **Electronic communications:** forbidden
  - No email, instant messaging, cell phone calls, etc

- Presence in lectures (213): strongly encouraged (and can count in your favor for borderline grades)

- No recordings of **ANY KIND**

- Slides will be posted after lecture, videos the next day.
Policies: Grading

- Exams (45%): midterm (18%), final (27%)

- Problem Sets (5%): all equally weighted

- Labs (50%): weighted according to effort

- Final grades based on a straight scale (90/80/70/60) with a small amount of curving
  - Only upward
Programs and Data

■ Topics

- Bit operations, arithmetic, assembly language programs
- Representation of C control and data structures
- Includes aspects of architecture and compilers

■ Assignments

- L0 (C programming Lab): Test/refresh your C programming abilities
- L1 (datalab): Manipulating bits
- L2 (bomblab): Defusing a binary bomb
- L3 (attacklab): The basics of code injection attacks
The Memory Hierarchy

Topics

- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS

Assignments

  - Learn how to exploit locality in your programs.
Exceptional Control Flow

Topics
- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

Assignments
- L5 (tshlab): Writing your own Unix shell.
  - A first introduction to concurrency
Virtual Memory

Topics
- Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

Assignments
- L6 (mallocclab): Writing your own malloc package
  - Get a real feel for systems-level programming
Networking, and Concurrency

Topics

- High level and low-level I/O, network programming
- Internet services, Web servers
- Concurrency, concurrent server design, threads
- I/O multiplexing with select
- Includes aspects of networking, OS, and architecture

Assignments

- L7 (proxylab): Writing your own Web proxy
  - Learn network programming and more about concurrency and synchronization.
Lab Rationale

- Each lab has a well-defined goal such as solving a puzzle or winning a contest

- Doing the lab should result in new skills and concepts

- We try to use competition in a fun and healthy way
  - Set a reasonable threshold for full credit
  - Post intermediate results (anonymized) on Autolab scoreboard for glory!
Lab0: C Programming

- Due 1/22 11:59pm
- You can start now: see 213 schedule page
- It should all be review:
  - Basic C control flow, syntax, etc.
  - Explicit memory management, as required in C.
  - Creating and manipulating pointer-based data structures.
  - Implementing robust code that operates correctly with invalid arguments, including NULL pointers.
  - Creating rules in a Makefile
- If this lab takes you more than 10 hours, please think hard about taking the course.
Doing the Lab

- [https://theproject.zone/s19-15213](https://theproject.zone/s19-15213)
  - Initially, go through canvas! (it will give you access)
  - The project zone will contain the lab write-ups.
  - You can **NOT** submit your work until you have completed the writeup.
  - Please get started on the writeup *early!*
  - After you have completed the writeup,

- [https://autolab.andrew.cmu.edu/courses/15213-s19](https://autolab.andrew.cmu.edu/courses/15213-s19)
  - Use supplied link to get the lab materials into your git account

- **If you have questions**
  - [https://piazza.com/class/jqiasi4tkhi7jf](https://piazza.com/class/jqiasi4tkhi7jf)
  - Office hours
  - Walkin-tutoring
Getting accounts

- **Autolab:** we will get you autolab accounts. If you don’t have one by Thursday of this week, send a message on piazza.

- **TPZ:** Use canvas

- **Piazza:** Use canvas

- **Git:** Each lab will come with a link

- **Problem set server:** We will get you accounts.
Theproject.zone

- Lab writeups will be online
- As you read the writeup there will be assessment questions.
- When you have completed all the assessment questions you will a link to the git repo and a submission code.
- Use the submission code when submitting your lab to autolab.
  - Not required for L0
Autolab (https://autolab.andrew.cmu.edu)

- Labs are provided by the CMU Autolab system
  - Project page: http://autolab.andrew.cmu.edu
  - Developed by CMU faculty and students
  - Key ideas: Autograding and Scoreboards
    - **Autograding**: Providing you with instant feedback.
    - **Scoreboards**: Real-time, rank-ordered, and anonymous summary.
  - Used by over 3,000 students each semester

- With Autolab you can use your Web browser to:
  - Handin your code for autograding by the Autolab server
  - View the class scoreboard
  - View the complete history of your code handins, autograded results, instructor’s evaluations, and gradebook.
  - View the TA annotations of your code for Style points.
Autolab accounts

- Students enrolled 1:00pm on Mon, Jan 15 have Autolab accounts by the end of the day

- You must be enrolled to get an account
  - Autolab is not tied in to the Hub’s rosters
  - We will update the autolab and TPZ accounts in time before Lab 1 is due

- For those who are waiting to add in, Lab 0 is available on the Schedule page of the course Web site.
Version Control: Your Good Friend

- We are using git classroom
- Must be used by all students for lab 1—7
- Students must commit early and often at least at the end of each day working on a lab
- If a student is accused of cheating (plagiarism), we will consult the GIT server and look for a reasonable commit history
- Missing GIT history will count against you
- We may ask you to include a GIT hash on your submissions
- Learn how to use GIT now

- Each assignment will have a git classroom link
Git basics – create a project for your lab

- Follow link from writeup in TPZ
- Use link to create a repo

Accept the Lab0 assignment

Accepting this assignment will give you access to the 213s19-lab0-seth4618 repository in the @cmu15213s19 organization on GitHub.
Git basics – create a project for your lab

- Follow link from writeup in TPZ
- Use link to create a repo

You are ready to go!

You may receive an invitation to join @cmu15213s19 via email invitation on your behalf. No further action is necessary.

Your assignment has been created here: https://github.com/cmu15213s19/213s19-lab0-seth4618
Git basics – create a project for your lab

- Follow link from writeup in TPZ
- Use link to create a repo
Git basics – create a project for your lab

- Follow link from writeup in TPZ
- Use link to create a repo
- Clone to your local machine
- Commit often!
Git basics – clone it to a working directory

- Clone into a directory with the proper permissions

```
$ git clone git@github.com:cmu15213s19/213s19-lab0-seth4618.git
$ cd 213s19-lab0-seth4618
```
Problem Sets

- **Rationale:**
  - Gives you a chance to work on conceptual problems
  - Helps prepare you for the exams

- **Assigned every week on Tuesday**

- **Due every week on Sunday at 11:59pm**

- **Links to problem set server will be posted on web pages**

- **PS1:** [https://exams.ugrad.cs.cmu.edu/exam/15213/ps1/](https://exams.ugrad.cs.cmu.edu/exam/15213/ps1/)
  - Remember the trailing slash
  - Remember to use https
Linux/Git bootcamp

- Sunday, Jan. 20, 7:00pm GHC Rashid Auditorium

- How to tar and untar files
- How to set permissions on local and afs directories
- How to set up GIT repository
- How to recover old files from git
- How to ssh to the lab machines
- How to use a make file
- And all the other things you were always afraid to ask ...
Waitlist questions

- 15-213: Mary Widom (marwidom@cs.cmu.edu)
- 18-213: ECE Academic services (ece-asc@andrew.cmu.edu)
- 15-513: Mary Widom (marwidom@cs.cmu.edu)
- 18-613: ECE Academic services (ece-asc@andrew.cmu.edu)

Please don’t contact the instructors with waitlist questions.
Welcome and Enjoy!