
Introduction to GDB and
Debugging
15-213/15-513/14-513: Introduction to Computer Systems

Big Questions

● How can code be debugged?
○ What is code tracing?

○ What is valgrind?

○ What is GDB?

● How do you use GDB?

Tools for Debugging

Code Tracing Valgrind GDB

printf() malloc/free bug Everything else

Debugging Basics: Code Tracing

Why use code tracing?

When to Use When Not to Use

● Easy and relatively
simple code

● Tracing conditional
paths in an if
statement

● Messy and
complicated
programs

● Typically prints out
variable values
regardless of if the
value has changed
○ “Tidal wave of

output”

Code Tracing

● Use print statements to determine variable values

at different points in code
○ Insert print statements after sections of code

■ Keep track of values

○ Can also print out several values at a time to see how

values change

○ Think through the actual vs expected outputs

Code Tracing Example

GOOD
- Not super complicated code
- Trace through if/else chain
- RISK: bug in trace code!

BAD
- Prints out series of

unhelpful information

Debugging Memory: Valgrind

Valgrind
● Tool for debugging, memory leak detection, and profiling

● Valgrind flags errors that don’t appear without valgrind

Using valgrind (Make sure Valgrind is installed):
$ valgrind ./a.out
...
HEAP SUMMARY:
==41495== in use at exit: 0 bytes in 0 blocks
==41495== total heap usage: 1 allocs, 1 frees, 8 bytes allocated
==41495==
==41495== All heap blocks were freed --- no leaks are possible
...

Why use Valgrind?

When to Use When Not to Use

● Dealing with
memory (especially
dynamic memory
allocation)

● Whenever bugs
occur. Get instant
feedback about
what the bug is,
where it occurred,
and why.

● Program
contains no
invalid reads
and writes and
no leaked
memory

● If the test case
is inherently
slow, then this
is not a good
choice

Running Valgrind

Recommended Valgrind Options:

$ valgrind -–leak-resolution=high –-leak-check=full
–-show-reachable=yes –-track-fds=yes ./myProgram arg1 arg2

Feel free to look through $ man valgrind and play around with options

Invalid Reads and Writes

● Reading freed variables

● Reading uninitialized variables

● Writing to uninitialized memory
○ Caused by writing too much data

to allocated memory

int foo(int y) {
int *bar = malloc(sizeof(int));
*bar = y;
free(bar);
printf(“bar: %d \n”, *bar);
return y;

}

Invalid Reads and Writes Sample Output

● Forgetting to free memory after

using it
○ Sometimes, there is overhead

memory that is never freed

■ Memory that is allocated by

a programmer should

always be freed

Memory Leaks

int foo(int y) {
int *bar = malloc(sizeof(int));
*bar = y;
printf(“bar: %d \n”, *bar);
return y;

}

Types of Memory Leaks

Still Reachable
● Block is still pointed at, programmer could

go back and free it before exiting

Definitely Lost
● No pointer to the block can be found

Indirectly Lost
● Block is “lost” because the blocks that point

to it are themselves lost

Possibly Lost
● Pointer exists but it points to an internal

part of the memory block

Memory Leaks Sample Output

Debugging Everything: GDB

What is GDB?

● GNU Debugger

● Powerful debugger that lets you inspect

your program as it’s executing

● Allows you to see what is going on ‘inside’

another program

● Breaks abstraction between program and

machine

Why use GDB?

When to Use When Not to Use

● Complicated code
that you need to
step through

● Need to find values
at specific points

● Valgrind was not
helpful

● To inspect machine
state

NOTE: This is
intentionally left blank
(Often Super Useful!)

● GDB is a powerful debugger that has the capabilities to
○ Set breakpoints stop at line of code

○ Set watchpoints stop when variable changes

○ Print values
○ Step through execution
○ Backtrace see previous function calls

● These capabilities will be useful for debugging general code in 213
○ GDB has many functionalities beyond these slides, check out this link for more features

■ https://sourceware.org/gdb/current/onlinedocs/gdb/

GDB Takeaways

https://sourceware.org/gdb/current/onlinedocs/gdb/

Starting GDB
● You can open gdb by typing into the shell:

○ $ gdb
○ (gdb) run 15213 // run program

● Type gdb and then a binary to specify which program to run
○ $ gdb <binary> ($ gdb ./a.out)

● You can optionally have gdb pass any arguments after the executable file using --args
○ $ gdb --args gcc -O2 -c foo.c

● Quitting GDB:
○ (gdb) quit [expression]
○ (gdb) q
○ or type an end-of-file character (usually Ctrl-d)

● More GDB options and help:
○ $ gdb -help OR $ gdb -h

Helpful Resource:
https://sourceware.org/gd
b/current/onlinedocs/gdb/

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/

GDB Commands

Controlled Program Execution

● (gdb) CTRL + c: stops execution

● (gdb) next (n): run next line of program and does NOT step into functions
○ (gdb) next X (n X): run next X lines of function

○ (gdb) nexti: run next line of assembly code and does NOT step into functions

● (gdb) step (s): run next line of program AND step into functions
○ (gdb) step X (s X): step through next X lines of function

○ (gdb) stepi: step through next line of assembly code

● (gdb) continue (c): continue running code until next breakpoint or error

● (gdb) finish (f):run code until current function is finished

Connecting Execution with Code

● (gdb) disassemble (disas): disassemble source code into assembly code
○ NOT dis: dis == disable breakpoints

● (gdb) list (l0): list 10 lines of source code from current line
○ (gdb) list X (l X): list 10 lines of source code from line number X

○ (gdb) list fnName (l fnName): list 10 lines of source code from fnName function

Breakpoints
● A breakpoint makes your program stop whenever a certain point in the program is reached

● (gdb)break function_name: breaks once you call a specific function. (break abbreviated b)

● (gdb)break *0x…: breaks when you execute instruction at a certain address

● (gdb)info b: displays information about all breakpoints currently set

● (gdb)disable #: disables breakpoint with ID equal to # ($disa is short form not $disas!!!)
● (gdb)clear [location]: delete breakpoints according to where they are in your program.

Setting breakpoint

Breakpoint hit

Breakpoint deleted

Watchpoints
● A special breakpoint that stops your program when the value of an expression changes

○ The expression may be a value of a variable, or involve values combined by operators

● Enable, disable, and delete both breakpoints and watchpoints

● (gdb)delete [watchpoint]:delete individual breakpoints/ watchpoints by specifying

breakpoint numbers
○ If no argument is specified, delete all breakpoints , (gdb)d

Examples:

● (gdb)watch foo: watch the value of a single variable

● (gdb)watch *(int *)0x600850: watch for a change in a numerically entered address

Watchpoint 1: *(int *)6293584(output)

Printing Values & Inspecting Memory

● (gdb) print (p) [any valid
expression]
○ Print local variables or memory locations

○ Be sure to cast to the right data type

■ (e.g. p *(long*)ptr)

○ (gdb) print (p) *pntr: prints value of

pointer

○ (gdb) print (p) *(struct_t*) tmp:

casts tmp to struct_t* and prints internal values

● (gdb) print (p) expr: prints value of data

type

● (gdb) x/nfu [memory address]:

equivalent to (gdb) print *(addr)
○ n: inspect next n units of memory

○ f (format): can be represented as:

■ d (decimal), x (hexadecimal), s (string)

○ u (unit): can be represented as:

■ b (bytes), w (words/ 4 bytes)

Printing Values Inspecting Memory

These are just some common ways to inspect
memory and print values, check the resources
links for more uses

● (gdb) backtrace (bt): prints a summary of how program got where it is
○ Print sequence of function calls that led to this point

○ Helpful to use when programs crash

● (gdb) up N (u N): go up N function calls

● (gdb) down N (d N): go down N function calls

Backtrace

Previous
“frames”

Calling Functions & Changing Values

Calling your program’s functions

- Examples:

● (gdb) call expr: Evaluate the expression expr without displaying void returned values.

Changing values:

● (gdb) set [variable] expression: change the value associated with a variable, memory

address, or expression
○ Evaluates the specified expression. If the expression includes the assignment operator ("="), that operator will be

evaluated and the assignment will be done.

● The only difference between the set variable and the print commands is printing the value

→ Will be useful later...

Lab Time!
https://tinyurl.com/y6ca8kea

https://tinyurl.com/y6ca8kea

Feedback:
https://tinyurl.com/213bootcamp3

https://tinyurl.com/213bootcamp3

Resources

https://www.tutorialspoint.com/gnu_debugger/index.htm

https://sourceware.org/gdb/current/onlinedocs/gdb/ [scroll down for more information]

https://www.tutorialspoint.com/gnu_debugger/index.htm
https://sourceware.org/gdb/current/onlinedocs/gdb/

