
1/3

Procedures

Getting Started

To obtain a copy of today’s activity, log into a shark machine and do the following:

$ wget http://www.cs.cmu.edu/~213/activities/machine-procedures.tar
$ tar xf machine-procedures.tar
$ cd machine-procedures

Record your answers to the discussion questions below. You may wish to refer
back to the activity from last week (https://www.cs.cmu.edu/~213/activities/
gdb-and-assembly.pdf) which contains a list of relevant GDB commands.

1 Activity 1: Calls

In the machine-procedures directory that you created, run the calls binary from
within GDB, like this:

$ gdb --args ./calls
(gdb) r

The program will instruct you as you progress through the activity. These questions
accompany the program; when it prompts you to answer a problem, discuss with your
partner and write your answer here.

Problem 1. Fill in the contents of the stack:

0x ← $rsp = 0x

0x

. . .

Problem 2. What was the meaning of the second number on the stack?

Problem 3. What does the ret instruction do?

Problem 4. Given your answer to Problem 3, what must it be that call does?

http://www.cs.cmu.edu/~213/activities/machine-procedures.tar

Procedures

2/3

Problem 5. What special optimization of calls has been applied to returnOneOpt?
Why does this optimization work for returnOneOpt? Can it be used for any call?

2 Activity 2: Arguments and Local Variables

In the machine-procedures directory that you created, run the locals binary from
within GDB, like this:

$ gdb --args ./locals
(gdb) r

The program will instruct you as you progress through the activity. These questions
accompany the program; when it prompts you to answer a problem, discuss with your
partner and write your answer here.

Problem 6. What is the type of the data seeArgs passes as the first argument to printf?
(You should be able to answer this question based solely on what you already know
about printf.) Given this, and what you saw when you followed the instructions up
to this point, what does the GDB command x/s do?

Problem 7. When seeMoreArgs calls printf, where did the compiler place arguments
7 and 8? Why do you think this happened?

Problem 8. Where does the function getV allocate its array? How does it pass this
location to getValue?

Problem 9. Which registers are treated as call-preserved by mult4? Which register
does mult4 expect to contain a return value? (It may help to disassemble mult2 as
well.)

Problem 10. What does the function mrec do?

Procedures

3/3

3 Activity 3 (Optional, Time Permitting): Endianness Preview

Rerun gdb �args ./calls and continue to the point where you printed the stack
before.

Problem 11. The first eight bytes of the stack contain the number 0x15213. What do
you expect the first two bytes of the stack to contain?

Problem 12. Check your hypothesis by running x/2xb $rsp. What did the first two
bytes of the stack contain? What can you deduce about the order in which each
integer’s bytes are stored?

Appendix: x86-64 ELF Calling Convention Summary

The following table lists all of the x86-64 integer registers, indicates whether each is
call-preserved or call-clobbered, and gives the conventional function of each.

Register Call Treatment Function

%rax Clobbered Return value
%rbx Preserved
%rcx Clobbered Argument #4
%rdx Clobbered Argument #3
%rbp Preserved
%rsp Preserved Stack pointer
%rsi Clobbered Argument #2
%rdi Clobbered Argument #1
%r8 Clobbered Argument #5
%r9 Clobbered Argument #6
%r10 Clobbered
%r11 Clobbered
%r12 Preserved
%r13 Preserved
%r14 Preserved
%r15 Preserved

	Activity 1: Calls
	Activity 2: Arguments and Local Variables
	Activity 3 (Optional, Time Permitting): Endianness Preview

