
Data in Memory

Getting Started

To obtain a copy of today’s activity, log into a shark machine and do the following:

$ wget http://www.cs.cmu.edu/~213/activities/machine-data.tar
$ tar xf machine-data.tar
$ cd machine-data

All of the questions below involve working with the program data-layout in the
debugger, so get ready to do that now:

$ gdb ./data-layout
(gdb) r

You may find it helpful to pull up some older handouts: at the end of the
handout from the first class on assembly language (https://www.cs.cmu.edu/~213/
activities/gdb-and-assembly.pdf) is a list of useful GDB commands. At the end
of the handout from the class on procedure calls (https://www.cs.cmu.edu/~213/
activities/machine-procedures.pdf) is a table listing all the x86’s integer registers
and describing how each might be used in a procedure call (e.g. %rdi holds the first
argument to the called function).

1 Integers and Local Variables

First, let’s review storage of local variables.

Problem 1. This function has a 32-bit integer local variable:

int returnOne(void) {
int local = -1;
return abs(local);

}

Disassemble returnOne and notice where local is stored. Now, what if we needed
to take the address of local? What problem might we run into, and what do you
expect the compiler to do about it?

Problem 2. Test your expectation from Problem 1 by disassembling the function
returnOneTwo. Its code is something like this:

1/8

http://www.cs.cmu.edu/~213/activities/machine-data.tar
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
https://www.cs.cmu.edu/~213/activities/machine-procedures.pdf
https://www.cs.cmu.edu/~213/activities/machine-procedures.pdf


Data

int returnOne(void) {
int local = -1;
return absp(/* ??? */);

}

Based on what you see, what do you think the declaration (prototype) of absp is?

2 Arrays

Now let’s review arrays of integers. The data-layout program contains one, defined
as:

int courses[4] = {0x15213, 0x15513, 0x18213, 0x18600};

Problem 3. Examine this array’s memory layout:

(gdb) x/4wx courses

Also examine the disassembly of the function getNth, which accesses an array of
integers:

int getNth(int *arr, size_t index) {
return arr[index];

}

What is the stride of an array of int (the number of bytes occupied by each entry)?
bytes

The stride does not appear in the C code for getNth. Does it appear in the
disassembly? If so, describe how it is used, in terms of the C-level variables.

A while ago we told you that strings in C are “just” arrays of characters. ‘c’ontinue
execution of the program now. It will stop inside a function that receives a string as an
argument. Print the string with this command:

(gdb) x/s $rdi

Print it out again, as an array of bytes, using this command:

(gdb) x/12bx $rdi

2/8



Data

Problem 4. There’s no information in any of the registers that says how long the string
pointed to by %rdi is. How does the x/s command know how long it is?

3 Structs

C allows you to define custom structured types comprising multiple named fields.
Take for example the struct defined as follows:

struct course {
int cs_ugrad;
int cs_grad;
int ece_ugrad;
int ece_grad;

};

Continue execution of the program now (use the c command again). It will stop
inside another function; this one takes a struct course * as its first argument.

Problem 5. Dump out the contents of the struct course * that was passed to the
current function using this command:

(gdb) x/4wx $rdi

Did you notice anything familiar about the layout?

struct course is quite simple: all its members have the same type. Structs can be
much more complicated, though. Their members don’t even all have to have the same
size! Consider this one:

struct increasing {
char a;
short b;
int c;
long d;

};

Problem 6. Suppose you had an instance of struct increasing whose fields were
initialized to 0x0a, 0x0b0b, 0x0c0c0c0c, and 0x0d0d0d0d0d0d0d0d, respectively. The
table below has boxes for 32 bytes, which should be more than enough to hold a
struct increasing. Write, in each box, what value (‘a’, ‘b’, ‘c’, or ‘d’) you think will
be in each byte. If you think a byte will be unused, leave it blank.

3/8



Data

0x00

0x08

0x10

0x18

After you fill in the table above, use the c command to resume execution. GDB will
stop inside a function that has received a struct increasing * as its first argument;
its fields have been initialized to 0x0a, 0x0b0b, 0x0c0c0c0c, and 0x0d0d0d0d0d0d0d0d,
just like we said before. Print out its contents, byte by byte, and use that information
to fill in the table below with the values each byte actually has—‘a’, ‘b’, ‘c’, or ‘d’, just
like before. If GDB says a byte is zero, leave it blank.

(gdb) x/32bx $rdi

0x00

0x08

0x10

0x18

Compare the two tables. If the data in memory isn’t where you thought it would be,
why do you think that might have happened?

Problem 7. Now consider this struct, which has the same fields as struct increasing,
but with the fields in a different order.

struct rearranged {
char a;
long b;
short c;
int d;

};

4/8



Data

Will this type take up more or less space than struct increasing?

Problem 8. The function GDB is currently stopped in received a pointer to a struct
rearranged as its second argument. Use this to check your answer to Problem 7 and
fill in the table below with the layout.

0x00

0x08

0x10

0x18

4 Arrays of Structs

Next, we’ll look at a way to store many instances of a particular structured type: an
array of structs. For instance, we might have:

struct pair {
int large;
char small;

};
struct pair pairs[2] = {
{0xabababab , 0x1},
{0xcdcdcdcd , 0x2}

};

Problem 9. What stride do you expect this array to have? bytes

Problem 10. Check your guess:

(gdb) x/16bx &pairs

What stride did the array actually have? bytes
Where did the compiler insert padding, if any?

Why did it need to do that?

5/8



Data

Conversely, structs can contain arrays. In this case, the struct will be aligned to the
width of the array’s element type. Here’s an example:

struct triple {
short large[2];
char small;

};

Problem 11. How will this struct’s size compare to that of pair?

5 2-D Arrays

Types can be nested arbitrarily. We’ll continue by looking at arrays of arrays.
There are actually two different ways to create arrays of arrays (“multi-dimensional

arrays”) in C. Both ways allow arrays with arbitrarily many dimensions. Each is more
convenient in some circumstances.

First, let’s see how this declaration is laid out in memory:

int8_t nested[2][3] = {{0x00, 0x01, 0x02}, {0x10, 0x11, 0x12}};

You’ll probably want a command such as:

(gdb) x/6bx &nested

Problem 12. What stride do the “inner” arrays have? bytes
How about the “outer” ones? bytes

Problem 13. Disassemble the function access. Take note of how array strides are
embedded in its assembly code. Here is its source code:

int8_t access(int8_t (*arr)[3], size_t row, size_t column) {
return arr[row][column];

}

This function is designed to be used with an array like nested. Could it also be used
with an array declared like this: int8_t flipped[3][2]?

Problem 14. Now, experiment with GDB commands to examine the layout of this
multi-dimensional array, which is structured differently:

6/8



Data

int8_t first[3] = {0x00, 0x01, 0x02};
int8_t second[3] = {0x10, 0x11, 0x12};
int8_t *multilevel[2] = {first, second};

(If you need a hint, ‘c’ontinue the program and read what it prints.) What stride does
the outer array have this time? bytes

Problem 15. An accessor for this type of 2-D array appears below; note the subtle
difference in its signature. Disassemble it to see what a difference this makes!

int8_t accessMultilevel(int8_t **arr, size_t row, size_t column) {
return arr[row][column];

}

Do you think this function would still be useful if first and second each had 4
elements? How about if they had two different lengths?

Problem 16. Imagine if we had instead defined multilevel as:

int8_t *multilevel[2] = {first, first};

What effect would we observe if we modified an element of first?

6 Endianness (Optional)

If you have extra time, let’s take a more detailed look at the byte-level representation
of multi-byte integers.

When multi-byte data is stored in byte-addressable memory, it becomes possible to
observe it two different ways: as a single “word” (multi-byte unit), or as a sequence of
bytes. Given int x, for instance, the hardware must consistently treat ((char *)&x)[0]
as some specific 8-bit subset of the 32-bit int. This has given rise to a sometimes
heated debate over endianness, the rule for which part of a number should “come first”
in memory. Should it be the 8 bits with the highest place value (“big-endian”) or the 8
bits with the lowest place value (“little-endian”)?1

Problem 17. To see a demonstration of endianness in action, let’s look back at the
courses global variable. (Recall that it is an array of 32-bit integers.) Run this GDB
command:

(gdb) x/4wx &courses

1These names are a reference to the 19th century satirical novel Gulliver’s Travels, in which, at one
point, two countries fight a war over the best way to crack open hard-boiled eggs.

7/8



Data

That command interprets every consecutive 4 bytes of the array as a single integer.
But what happens if we ask GDB to print each byte individually? Run this command:

(gdb) x/16bx &courses

Stare carefully at that mess until you have convinced yourself that it really is the
same data you saw before! The reason it looks different is that x86-64 is a little-endian
architecture: it stores the lowest-order bits of a wide type in the byte with the lowest
memory address.

What disadvantage of little-endian did you just observe?

Problem 18. Now let’s look at an advantage of little-endian byte order. Disassemble
the function narrowingCast. Its C source code looks like this:

int narrowingCast(long *num) {
return (int) *num;

}

How would the assembly of this function differ if x86-64 were a big-endian architec-
ture?

8/8


	Integers and Local Variables
	Arrays
	Structs
	Arrays of Structs
	2-D Arrays
	Endianness (Optional)

