
Control Flow

1 Learning Objectives

• Understand the use of condition codes and jump instructions in x86 assembly
language.

• Recognize the components of simple loops in assembly language.

• Infer the C code corresponding to loops in assembly.

• Apply knowledge of the TEST and CMP instructions in the context of loops to
trace switch statements in assembly.

2 Getting Started

To obtain a copy of today’s activity, log into a shark machine and do the following:

$ wget http://www.cs.cmu.edu/~213/activities/machine-control.tar
$ tar xf machine-control.tar
$ cd machine-control

Record your answers to the discussion questions below. You may wish to refer back
to the activity from the previous class (https://www.cs.cmu.edu/~213/activities/
gdb-and-assembly.pdf) which contains a list of relevant GDB commands.

3 Basic Control Flow

This activity introduces the concept of condition codes and branch instructions.
The condition codes are four single-bit registers, named ZF, SF, CF, and OF. They are

set implicitly by most arithmetic instructions (but not by MOV or LEA) and they have
the following meanings:

ZF Result of operation was zero.

SF Result of operation was negative (its Sign bit was set)

CF Operation had an unsigned overflow (there was a Carry from the leftmost pair of
bits)

OF Operation had a signed overflow (the sign bit of both inputs was the same, and
the sign bit of the output is not equal to whatever that was)

Solutions 1/11

http://www.cs.cmu.edu/~213/activities/machine-control.tar
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf

Control Flow

Jump instructions (also called branch instructions) change the program counter (%rip).
There are fifteen basic jump instructions:

Name A.k.a. Jump if. . . After CMP. . .

JMP Always

JS Negative (SF = 1)
JNS Not negative (SF = 0)
JO Signed overflow (OF = 1)
JNO No signed overflow (OF = 0)

JE JZ Zero (ZF = 1) Equal
JNE JNZ Not zero (ZF = 0) Not equal
JB JC, JNAE Unsigned overflow (CF = 1) Unsigned below
JAE JNC, JNB No unsigned overflow (CF = 0) Unsigned above or equal

JA JNBE CF = 0 and ZF = 0 Unsigned above
JBE JNA CF = 1 or ZF = 1 Unsigned below or equal

JL JNGE SF , OF Signed less
JGE JNL SF = OF Signed greater or equal
JG JNLE ZF = 0 and SF = OF Signed greater
JLE JNG ZF = 1 or SF , OF Signed less or equal

The official “name” of a jump instruction is the name that objdump and gdb will use
in disassembly listings. This is usually mnemonic for what the jump instruction will
do if used immediately after a CMP instuction (as described in the “After CMP. . . ”
column). The “a.k.a.” (also known as) names are mnemonic for other interpretations
of what the instruction does; people writing assembly by hand can use them for clarity,
but the distinction is lost in machine language.

Problem 1. Why is JZ (jump if zero) the same instruction as JE (jump if equal)?

Remember that CMP sets the flags based on the result of subtracting its first argument
from its second argument. If the two arguments to CMP are equal, the result of the
subtraction will be zero, so ZF will be set and SF, OF, CF will be clear. Thus, “jump if
ZF = 1” performs “jump if equal” when executed immediately after a CMP instruction.
The alternative name JZ more accurately describes the behavior when this instruction
comes immediately after a TEST instruction (see below).

Problem 2. Within the machine-control directory you created earlier, read the file
jumps.S. The code in this file doesn’t do anything useful, it just demonstrates the
syntax of jump instructions. When you understand what’s going on in this file, run
these commands:

Solutions 2/11

Control Flow

$ as jumps.S -o jumps.o
$ objdump -d jumps.o

Examine the output of the second command. (There will be a lot of output. You
may want to make your shell window taller, or pipe the output to a “pager”, e.g.
objdump -d jumps.o | less). Compare it to what you remember from jumps.S, and
the table above. You will probably notice that all of the “a.k.a.” instructions have
changed to the corresponding “name” instruction. What else do the lines for those
groups of instructions have in common?

In the hexadecimal representation of machine code, shown to the left of each
assembly instruction, when the mnemonic is the same, the first byte of the machine
code is also always the same. For example:

6: 72 2e jb 36 <destination>
8: 72 2c jb 36 <destination>
a: 72 2a jb 36 <destination>

This byte of the machine code is the opcode (“operation code”): it identifies the
instruction to the CPU. On the x86, the opcode is not always the first byte. The jump
instructions happen to be short and simple.

Problem 3. In the disassembly listing from the previous question, look at the second
byte of each machine instruction. This is the part of the instruction that tells the CPU
where to find the instruction that will be executed next (if the jump happens). Do
you see a pattern to these bytes? What relationship is there among the address of
“destination”, the address of each jump instruction, the length of each jump instruction,
and the value of the second byte?

Each second byte’s value is 2 less than the value of the previous instruction’s second
byte. The last jump instruction in the list has a second byte whose value is zero.

The second byte’s value is equal to the number of bytes in between the address
of “destination” and the address of the first byte after the jump instruction. Put
another way, it’s the value to add to %rip if the jump is taken. (For “microarchitectural”
reasons—reasons having to do with how the CPU works internally—%rip always
holds the address of the next instruction to execute, assuming the jump, if any, is not
taken.)

Problem 4. (Advanced) Uncomment the line of jumps.S that reads

// .skip 97

Repeat the as and objdump commands. What happened to the first several jump
instructions? Why do you think this is? What would happen if you changed 97 to 98?
Experiment with various other numbers. Do you see a pattern?

Solutions 3/11

Control Flow

The first several jump instructions’ machine code has become longer. JMP is
now e9 xx xx xx xx instead of eb xx, and some of the conditional jumps are
0f 8x xx xx xx xx instead of 7x xx. This happens for each instruction that needs to
encode a change in %rip larger than 0x7F.

Problem 5. (Advanced) Based on your answer to the previous question, what do you
think the machine instruction eb f0would do?

The value added to %rip is signed, so this instruction jumps (unconditionally) to the
instruction beginning 14 bytes before this instruction.

4 Comparisons and Conditional Set Instructions

In this activity you will experiment with the CMP instruction, which sets the condition
codes based on comparing two integers, and see how some of the conditional jump
mnemonics correspond to some of C’s relational operators. You will also be introduced
to the conditional set instructions, which set a register to 0 or 1 based on the condition
codes.

To begin this activity, run these commands (again, within the “machine-control”
directory):

$ gdb ./cmp-set
(gdb) r

Read and follow the instructions that are printed, until it tells you to come back to
this handout.

Problem 6. Based on the disassembly of sete, seta, and setg, which registers contain
function arguments? Can you tell which is the first and which is the second argument?

%rsi and %rdi contain function arguments. (These functions only use the low 16
bits of each, so the disassembly refers to %si and %di, but conventionally we talk about
an entire register using its R-name.) It’s not possible to tell from this code which is the
first argument and which is the second.

Problem 7. Based on the disassembly of sete, seta, and setg, which register contains
the return value?

%rax contains the return value. (Here, only the low 32 bits are used, so the
disassembly refers to %eax.)

Solutions 4/11

Control Flow

You can call functions from the debugger with the call command.1 For example,

(gdb) call sete(0, 1)

calls the function setewith arguments 0 and 1, and prints the result, like this:

(gdb) call sete(0, 1)
$1 = 0

In this case, sete returned zero. The “$1 =” prefix is to remind you that you can use
$1 in future function calls, or any other place GDB wants an arithmetic expression, to
refer back to the number that was returned. (This is more useful with functions that
can return many different values.)

Problem 8. Call sete, seta, and setgwith each of the following pairs of values. Fill
in the table.

Arg 1 Arg 2 sete setg seta

0 0 1 0 0
0 1 0 0 0
1 0 0 1 1
−1 0 0 0 1

0 −1 0 1 0
32768 32767 0 0 1
32767 32768 0 1 0

32768 32768 1 0 0
32768 −32768 1 0 0
−32768 32768 1 0 0
−32768 −32768 1 0 0

Problem 9. Assuming %rdi is the first and %rsi the second argument register, fill in
the blanks in the C source code for sete, setg, and seta. (Hint: stdint.h defines the
type name int16_t for 16-bit signed integers, and the type name uint16_t for 16-bit
unsigned integers.)

#include <stdint.h>
int sete(uint16_t a,

uint16_t b) {
return a == b;

}

1Caution: Do not do this in bomb lab or attack lab. If you do, your bomb will explode, and your
attack will not count.

Solutions 5/11

Control Flow

int setg(int16_t a,
int16_t b) {

return a > b;
}

int seta(uint16_t a,
uint16_t b) {

return a > b;
}

5 Tests and Conditional Move Instructions

In this activity you will experiment with the TEST instruction, which sets the condition
codes based on the bitwise and of two integers. You will also be introduced to the
conditional move instructions, which, based on the condition codes, either do or do not
copy one register into another.

To begin this activity, run these commands (again, within the “machine-control”
directory):

$ gdb ./test-cmov
(gdb) r

Read and follow the instructions that are printed, until it tells you to come back to
this handout.

Problem 10. Why does the cmovc function contain a CMOVB instruction rather than a
CMOVC instruction? (Hint: look carefully at the table on page 2.)

CMOVB and CMOVC are two names for the same machine instruction. The
disassembler always prints “cmovb” for this instruction, even though it probably says
“cmovc” in the source code for test-cmov.

Problem 11. In the disassembly of cmove, cmovs, and cmovc, what do you notice about
the arguments to the TEST instruction?

Both arguments are the same—TEST is being asked to set condition codes based
on the bitwise AND of a register with itself. (This is actually more common than any
other use of TEST. x & x == x for all x, so the condition codes are simply set based on
the value of x.)

Problem 12. Call cmove, cmovs, and cmovc with each of the following pairs of values.
Fill in the table.

Solutions 6/11

Control Flow

Arg 1 Arg 2 cmove cmovs cmovc

0 0 0 0 0
0 1 1 0 0
0 2 2 0 0

1 0 0 0 0
1 1 0 0 0
1 2 0 0 0

−1 0 0 0 0
−1 1 0 1 0
−1 2 0 2 0

32767 1 0 0 0
32768 1 0 1 0

Problem 13. Why does cmovs(32768, 1) return 1?

32768 is larger than Tmax for a 16-bit twos-complement number, so it is interpreted
as negative. Put another way, when test %di,%di examines the result of the AND,
its sign bit is set, and so it sets SF.

Problem 14. Is it possible to make cmovc return anything other than 0? Explain.

No. Bitwise AND never has a carry out, so TEST always clears CF. CMOVC after
TEST will never do the move.

6 Loops

In Problem 5 we saw that jump instructions can jump both forward and backwards
within the machine code. Backward jumps enable us to implement loops, in which
part of the code is executed repeatedly.

Problem 15. You have been provided a file loops.o, containing machine code for
three functions. The body of each function is a loop. Run the command

$ objdump -d loops.o

Translate the assembly language back into C and fill in the blanks in the functions
below.

Solutions 7/11

Control Flow

int forLoop(int* x, int len) {
int ret = 0;
for (i = 0; i < len; i++) {

ret += x[i];
}
return ret;

}

int whileLoop(int* x, int len) {
int ret = 0;
while (i < len) {

ret += x[i];
i++;

}
return ret;

}

int doWhileLoop(int* x, int len) {
do {

ret += x[i];
i++;

} while (i < len);
return ret;

}

Problem 16. While you were working out the previous problem, how did you identify
which register was used as the counter variable i?

One way is to look for a register that’s being incremented by 1 each time around
the loop. (Caution: we used -Og mode to compile loops.o. With more aggressive
optimization, like what you get with -O2, there might not be any such register.)

Problem 17. If we hadn’t told you, and the names didn’t give it away, could you
have known that forLoop’s C source contained a for loop and whileLoop’s C source
contained a while loop?

Solutions 8/11

Control Flow

No, because both functions were compiled to exactly the same machine code. This
is not an accident; any for loop

for (setup; condition; increment) {
body;

}

can be rewritten as an equivalent while loop

setup;
while (condition) {

body;
increment;

}

7 Switch Statements

Switch statements in C are often compiled to computed jumps in assembly language. A
jump instruction with an argument like

jmp *.L4(,%rdi,8)

looks up the %rdi’th entry in the array beginning at .L4, and jumps to the address
stored in that array entry. So, for instance, if %rdi is 2, and array entry 2 (counting from
zero, as always) contains the address of label .L5, then the CPU will jump to .L5.

Here is a complete example of what this looks like in assembly.

switcher:
cmpq $7, %rdi
ja .L2
jmp *.L4(, %rdi, 8)

.L7:
xorq $15, %rsi
movq %rsi, %rdx

.L3:
leaq 112(%rdx), %rdi
jmp .L6

.L5:
leaq (%rdx, %rsi), %rdi
salq $2, %rdi
jmp .L6

.L2:
movq %rsi, %rdi

.L6:
movq %rdi, (%rcx)

Solutions 9/11

Control Flow

ret

.section .rodata
.L4:

.quad .L3

.quad .L2

.quad .L5

.quad .L2

.quad .L6

.quad .L7

.quad .L2

.quad .L5

Problem 18. The C code below is a partial translation (“decompilation”) of the
assembly code above. Fill in the case labels with the appropriate numbers.

// %rdi = a and val, %rsi = b, %rdx = c, %rcx = dest
void switcher(long a, long b, long c, long *dest) {

long val;
switch (a) {

case 5:
c = b ^ 15;

case 0:
val = c + 112;
break;

case 2:
case 7:

val = (c + b) << 2;
break;

case 4:
val = a;
break;

default:
val = b;
}
*dest = val;

}

Solutions 10/11

Control Flow

The key to figuring out switch statements is to combine information from the assembly
and the jump table to determine the different cases. The ja .L2 instruction tells us
that .L2 is the default case, since all values not within 0 to 7 go to this case. We can
then look in the table and see that values 1 and 3 also go to .L2, so they must not have
case labels of their own. The value .L5 is also repeated in the jump table, which means
this must correspond to the pair of case labels next to each other: 2 and 7. Then we
match up the remaining labels with the remaining C cases. This problem is example
3.31 in the textbook.

Solutions 11/11

	Learning Objectives
	Getting Started
	Basic Control Flow
	Comparisons and Conditional Set Instructions
	Tests and Conditional Move Instructions
	Loops
	Switch Statements

