Statistical Techniques in Robotics (16-831, F12) Lecture #21 (Nov 14, 2012)

Functional Gradient Descent

Lecturer: Drew Bagnell Scribe: Daniel Carlton Smith!

1 Goal of Functional Gradient Descent

We have seen how to use online convex programming to learn linear functions by optimizing costs
of the following form:

Liw) =Y (i —w'x)?+  N|w|?

loss regularization/prior

We want generalize this to learn over a space of more general functions f : R™ — R. The high-level
idea is to learn non-linear models using the same gradient-based approach used to learn linear
models.

L(F) =D (i = F(xi)* + A1

Up until now we have only considered functions of the form f(x) = w’x, but we will now extend
this to a more general space of functions.

2 Functionals

In the case of functional gradient descent, we’d like to be able to work in a generalized space of
functions, instead of a space of weights. In order to proceed, we will need some notion of functions
on functions, functionals. A functional E : f — R is a function of functions f € Hx. In contrast,
an operator accepts a function and returns a function.

e Operator: E: f— f

e Functional: F: f — R

As an example let us write the terms of our loss function from above as functionals:

o Eilf]=IIfI]?
o By[f] = (y— f(x))?
o Blf] =>i(yi — f(xi))* + A fII?

!Based on the scribe work of Abhinav Shrivastava, Varun Ramakrishna, Dave Rollinson, Daniel Munoz, Tomas
Simon, Jack Singleton and Sergio Valcarcel




Another simple example of an functional is the evaluation functional, Fy[f], which evaluates f(z)
for a given value of x. Other examples include functionals that return the arclenghth of a function,
or functionals that return the maximum-value of a function.

3 Functional Gradients

A gradient can be thought of as:

e Vector of partial derivatives
e Direction of steepest ascent. (maxf(x + Ax), where Az is small)

e Linear approximation of the function (or functional), ie. f(xo-+e€) = f(x0)+e-V f(zg) +O(€2).
———

gradient

We will use the third definition.

A functional gradient VE([f] is defined implictly as the linear term of the change in a function due
to a small perturbation e in its input: E[f + eg] = E[f] + ¢(VE|[f], g) + O(€?).

Before computing the gradients for these functionals, let us look at a few tools that will help us
derive the gradient of the loss functional

3.1 Chain Rule For Functional Gradients

Consider differentiable functions C' : R — R that are functions of functionals G, C(G[f]). Our
cost function L[f] from before was such a function, these are precisely the functions that we are
interested in minimizing.
The derivative of these functions follows the chain rule:

_ 9C(Glf])

ve(Gl) = =g g VGl (1)

Example: If C' = (||f]|?)3, then VC = 3(||f]*)%(2f)

3.2 Another useful functional gradient

As stated above, one simple but useful functional that we frequently come across is the evaluation
functional. The evaluation functional evaluates f at the specified z: E,[f] = f(x)

e Gradient is VE, = K(z,-)

E.[f + eg] f(x) +eg(x) +0
f(x) + e(K(z,-),9) +0

EL[f]+ e(VEg, g) + O(€%)

e [t is called a linear functional due to the lack of a multiplier on perturbation e.



4 Review of Kernels

e Ultimately, we wish to learn a function f : R” — R that assigns a meaningful score given a
data point. For example, in binary classification, we would like an f(+) to return both positive
and negative values, given positive and negative samples, respectively.

e A kernel K : R” x R" — R intuitively measures the correlation between f(x;) and f(x;).
Considering a matrix K with entries K;; = K(xj,x;), then matrix K must satisfy the prop-
erties:

— K is symmetric (K;; = Kj;)
— K is positive-definite (Vx € R" : x # 0,xTKx > 0)
Hence, a valid kernel is the inner product: K;; = (xj,x;).

e A function can be considered that is a weighted composition of many kernels centered at
various locations x;:

Q
FO) =D ok, @

where @ is the number of kernels that compose f(-) and a; € R is each kernel’s associated
weight. All functions f(-) with kernel K that satisfy the above properties and can be written
in the form of Equation 2 are said to lie in a Reproducing Kernel Hilbert Space (RKHS) Hx:
feHk

However to do gradient descent on the space of such functions, we need the notion of a distance,
norm and an inner product. We formalize this by introducing the Reproducing Kernel Hilbert
Space.

5 Reproducing Kernel Hilbert Space

The Reproducing Kernel Hilbert Space (RKHS), denoted by Hy, is the space of functions f(-) that
can be written as ), a;k(x;, -), where k(x;,x;) satisfies certain properties described below.

To be able to manipulate objects in this space of functions, we will look at some key properties:

e The inner product of f,g € H;, is defined as

(f.g) 2 D2 aijh(xix;) = o KB

? J

where f(-) = >, a;k(x;,), g(-) = Zj Bjik(x;,-), o and B are vectors comprising, respectively,
a; and f; components, and K is n by m (where n is the number of x; in f, and m those in
g) with Kij = ]{I(Xi,Xj).

Note that this will satisfy linearity (in both arguments):



= (it for9) = (f1.9) + ([2,9)

With this inner product, the norm will be: ||f||?> = (f, f) = o Ka. It is worth noting that o
and 8 are very negative when opposite each other, and 0 where orthogonal. The two functions
have a lot of overlap if they put "bumps” at similar places.

e The reproducing property is observed by taking the inner-product of a function with a
kernel (f, K(x*,-)) and functional E:

Eyx {f] = <f7K(X*’ ))

Q Q Q
= O iK(xi,), K(,x)) =Y ailK(xi,), K(,x")) = > i K (x3,x")
=1 =1 =1
= Jx)
~——
eval @ z*

An example of a valid kernel for x € R" is the inner product: k(x;,x;) = X,LTX]'. Intuitively, the
kernel measures the correlation between x; and x;.

A very commonly used kernel is the RBF or Radial Basis Function kernel, which takes the form

L |2
k(xi,xj) =e 711" " With this kernel in mind, a function can be considered as a weighted (by

«;) composition of bumps (the kernels) centered at the @ locations x;:

Q
f() = ZaiK(xiv ‘)7
=1

6 Loss Minimization

Again, let us consider our cost function defined over all functions f in our RKHS, as before our
loss is:

L(f) = (i — f(xi)? + N f]?

)

The purpose of (f, f) is to penalize the complexity of the solution f. Here it acts like the log of
a gaussian prior over fungtions. Intuitively, the probability can be thought of as being distributed
according to P(f) = 2e ™2 (1) (in practice this expression doesn’t work because Z becomes infinite).

We want to find the best function f in our RKHS so as to minimize this cost, and we will do this
by moving in the direction of the negative gradient: f — aV L. To do this, we will first have to be
able to express the gradient of a function of functions (ie. a functional such as L[f]).

6.1 Functional gradient of the regularized least squares loss function

e Let’s look at the functional gradient of the second term of the loss function:

VE[f] = VIIfII® 3)



Expanding it out using a Taylor’s series type expansion

E[f +eg] = (f+eg, f+eg)
= |IfIl+2{f.eg) + €|gl|
= |IfIl+€2f,g) + O(?)

We observe that
VE[f] = VI||fII* = 2f (4)

e Now for the first term of the loss function

Using the chain rule we have

VE[f] = =2(yi — [(x:))V(f(2:)) (6)

We observe that V(f(z;)) is the functional gradient of the evaluation functional. Substituting
in the gradient of the evaluaton functional as computed in the previous section we have :

VE[f] = =2(yi — f(x:)) K (xi, ) (7)

7 Functional gradient descent

e Regularized least squares loss function L[f]

Lifl = (yi— f(xi)>+ Al
Lif] = (yi — Ex,[f])* + AllfIIP
VL[f] = —2(yi — f(x:))K(xi,-) +2\f

Update rule for the regularized least squares loss function:

ftr1 <~ fi—mVL
— S = me(=2(ye — fi(xe)) K(x4,-) + 2\ fy)
—  fe(1=2neA) + 2ne(ys — fe(xe)) K (x4, )

where 7 is the learning rate at time step .

The update rule is equivalent to:

— Adding a kernel K(x¢,-) weighted by 2m:(y: — fi(x¢)).
— Shrinking all other weights by (1 — 2mp\) multiplier.

e SVM loss function L(f)

L(f(x¢), ye) = max(0,1 — ye f(xe)) + Al f|[? (®)



The sub-gradient VL has two cases. One where the prediction is correct by margin = 1, and
the other where is not correct by margin = 1 (margin error).

0 if (1 —yif(x;)) <0

L'(f(x¢),y) f'(x¢) = =yt K(x¢,-) else margin error )

VL((xt), yt) = {

The update rule is equivalent to:

— Adding a kernel K (x¢,-) weighted by n:y; in case of margin error.
— Shrinking all other weights by (1 — 2mp\) multiplier.



