
Statistical Techniques in Robotics (16-831, F12) Lecture #21 (Nov 14, 2012)

Functional Gradient Descent

Lecturer: Drew Bagnell Scribe: Daniel Carlton Smith1

1 Goal of Functional Gradient Descent

We have seen how to use online convex programming to learn linear functions by optimizing costs
of the following form:

L(w) =
∑
i

(yi −wTxi)
2︸ ︷︷ ︸

loss

+ λ||w||2︸ ︷︷ ︸
regularization/prior

We want generalize this to learn over a space of more general functions f : Rn → R. The high-level
idea is to learn non-linear models using the same gradient-based approach used to learn linear
models.

L(f) =
∑
i

(yi − f(xi))
2 + λ||f ||2

Up until now we have only considered functions of the form f(x) = wTx, but we will now extend
this to a more general space of functions.

2 Functionals

In the case of functional gradient descent, we’d like to be able to work in a generalized space of
functions, instead of a space of weights. In order to proceed, we will need some notion of functions
on functions, functionals. A functional E : f → R is a function of functions f ∈ HK . In contrast,
an operator accepts a function and returns a function.

• Operator: E : f → f

• Functional: E : f → R

As an example let us write the terms of our loss function from above as functionals:

• E1[f] = ||f ||2

• E2[f] = (y − f(x))2

• E[f] =
∑

i(yi − f(xi))
2 + λ||f ||2

1Based on the scribe work of Abhinav Shrivastava, Varun Ramakrishna, Dave Rollinson, Daniel Munoz, Tomas
Simon, Jack Singleton and Sergio Valcarcel

1

Another simple example of an functional is the evaluation functional, Fx[f], which evaluates f(x)
for a given value of x. Other examples include functionals that return the arclenghth of a function,
or functionals that return the maximum-value of a function.

3 Functional Gradients

A gradient can be thought of as:

• Vector of partial derivatives

• Direction of steepest ascent. (maxf(x+ ∆x), where ∆x is small)

• Linear approximation of the function (or functional), ie. f(x0+ε) = f(x0)+ε·∇f(x0)︸ ︷︷ ︸
gradient

+O(ε2).

We will use the third definition.

A functional gradient ∇E[f] is defined implictly as the linear term of the change in a function due
to a small perturbation ε in its input: E[f + εg] = E[f] + ε〈∇E[f], g〉+O(ε2).

Before computing the gradients for these functionals, let us look at a few tools that will help us
derive the gradient of the loss functional

3.1 Chain Rule For Functional Gradients

Consider differentiable functions C : R → R that are functions of functionals G, C(G[f]). Our
cost function L[f] from before was such a function, these are precisely the functions that we are
interested in minimizing.

The derivative of these functions follows the chain rule:

∇C(G[f]) =
∂C(G[f])

∂λ
|G(f)∇G[f] (1)

Example: If C = (||f ||2)3, then ∇C = 3(||f ||2)2(2f)

3.2 Another useful functional gradient

As stated above, one simple but useful functional that we frequently come across is the evaluation
functional. The evaluation functional evaluates f at the specified x: Ex[f] = f(x)

• Gradient is ∇Ex = K(x, ·)

Ex[f + εg] = f(x) + εg(x) + 0

= f(x) + ε〈K(x, ·), g〉+ 0

= Ex[f] + ε〈∇Ex, g〉+O(ε2)

• It is called a linear functional due to the lack of a multiplier on perturbation ε.

2

4 Review of Kernels

• Ultimately, we wish to learn a function f : Rn → R that assigns a meaningful score given a
data point. For example, in binary classification, we would like an f(·) to return both positive
and negative values, given positive and negative samples, respectively.

• A kernel K : Rn × Rn → R intuitively measures the correlation between f(xi) and f(xj).
Considering a matrix K with entries Kij = K(xi,xj), then matrix K must satisfy the prop-
erties:

– K is symmetric (Kij = Kji)

– K is positive-definite (∀x ∈ Rn : x 6= 0,xTKx > 0)

Hence, a valid kernel is the inner product: Kij = 〈xi,xj〉.

• A function can be considered that is a weighted composition of many kernels centered at
various locations xi:

f(·) =

Q∑
i=1

αiK(xi, ·), (2)

where Q is the number of kernels that compose f(·) and αi ∈ R is each kernel’s associated
weight. All functions f(·) with kernel K that satisfy the above properties and can be written
in the form of Equation 2 are said to lie in a Reproducing Kernel Hilbert Space (RKHS) HK :
f ∈ HK

However to do gradient descent on the space of such functions, we need the notion of a distance,
norm and an inner product. We formalize this by introducing the Reproducing Kernel Hilbert
Space.

5 Reproducing Kernel Hilbert Space

The Reproducing Kernel Hilbert Space (RKHS), denoted by Hk, is the space of functions f(·) that
can be written as

∑
i αik(xi, ·), where k(xi,xj) satisfies certain properties described below.

To be able to manipulate objects in this space of functions, we will look at some key properties:

• The inner product of f, g ∈ Hk is defined as

〈f, g〉 4=
∑
i

∑
j

αiβjk(xi,xj) = α>Kβ

where f(·) =
∑

i αik(xi, ·), g(·) =
∑

j βjk(xj , ·), α and β are vectors comprising, respectively,
αi and βi components, and K is n by m (where n is the number of xi in f , and m those in
g) with Kij = k(xi,xj).

Note that this will satisfy linearity (in both arguments):

– 〈λf, g〉 = λ〈f, g〉

3

– 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉

With this inner product, the norm will be: ||f ||2 = 〈f, f〉 = α>Kα. It is worth noting that α
and β are very negative when opposite each other, and 0 where orthogonal. The two functions
have a lot of overlap if they put ”bumps” at similar places.

• The reproducing property is observed by taking the inner-product of a function with a
kernel 〈f,K(x∗, ·)〉 and functional E:

Ex∗ [f] = 〈f,K(x∗, ·)〉

= 〈
Q∑
i=1

αiK(xi, ·),K(·,x∗)〉 =

Q∑
i=1

αi〈K(xi, ·),K(·,x∗)〉 =

Q∑
i=1

αiK(xi,x
∗)

= f(x∗)︸ ︷︷ ︸
eval @ x∗

An example of a valid kernel for x ∈ Rn is the inner product: k(xi,xj) = xT
i xj . Intuitively, the

kernel measures the correlation between xi and xj .

A very commonly used kernel is the RBF or Radial Basis Function kernel, which takes the form

k(xi,xj) = e
− 1
γ
||xi−xj ||2 . With this kernel in mind, a function can be considered as a weighted (by

αi) composition of bumps (the kernels) centered at the Q locations xi:

f(·) =

Q∑
i=1

αiK(xi, ·),

6 Loss Minimization

Again, let us consider our cost function defined over all functions f in our RKHS, as before our
loss is:

L(f) =
∑
i

(yi − f(xi))
2 + λ||f ||2

The purpose of 〈f, f〉 is to penalize the complexity of the solution f . Here it acts like the log of
a gaussian prior over functions. Intuitively, the probability can be thought of as being distributed
according to P (f) = 1

Z e
− 1

2
〈f,f〉 (in practice this expression doesn’t work because Z becomes infinite).

We want to find the best function f in our RKHS so as to minimize this cost, and we will do this
by moving in the direction of the negative gradient: f − α∇L. To do this, we will first have to be
able to express the gradient of a function of functions (ie. a functional such as L[f]).

6.1 Functional gradient of the regularized least squares loss function

• Let’s look at the functional gradient of the second term of the loss function:

∇E[f] = ∇||f ||2 (3)

4

Expanding it out using a Taylor’s series type expansion

E[f + εg] = 〈f + εg, f + εg〉
= ||f ||+ 2〈f, εg〉+ ε2||g||
= ||f ||+ ε〈2f, g〉+O(ε2)

We observe that
∇E[f] = ∇||f ||2 = 2f (4)

• Now for the first term of the loss function

E[f] =
∑
i

(yi − f(xi))
2 (5)

Using the chain rule we have

∇E[f] = −2(yi − f(xi))∇(f(xi)) (6)

We observe that ∇(f(xi)) is the functional gradient of the evaluation functional. Substituting
in the gradient of the evaluaton functional as computed in the previous section we have :

∇E[f] = −2(yi − f(xi))K(xi, ·) (7)

7 Functional gradient descent

• Regularized least squares loss function L[f]

L[f] = (yi − f(xi))
2 + λ||f ||2

L[f] = (yi − Exi [f])2 + λ||f ||2

∇L[f] = −2(yi − f(xi))K(xi, ·) + 2λf

Update rule for the regularized least squares loss function:

ft+1 ← ft − ηt∇L
← ft − ηt(−2(yt − ft(xt))K(xt, ·) + 2λft)

← ft(1− 2ηtλ) + 2ηt(yt − ft(xt))K(xt, ·)

where ηt is the learning rate at time step t.

The update rule is equivalent to:

– Adding a kernel K(xt, ·) weighted by 2ηt(yt − ft(xt)).

– Shrinking all other weights by (1− 2ηtλ) multiplier.

• SVM loss function L(f)

L(f(xt), yt) = max(0, 1− ytf(xt)) + λ||f ||2 (8)

5

The sub-gradient ∇L has two cases. One where the prediction is correct by margin = 1, and
the other where is not correct by margin = 1 (margin error).

∇L((xt), yt) =

{
0 if (1− yif(xi)) ≤ 0

L′(f(xt), yt)f
′(xt) = −ytK(xt, ·) else margin error

(9)

The update rule is equivalent to:

– Adding a kernel K(xt, ·) weighted by ηtyt in case of margin error.

– Shrinking all other weights by (1− 2ηtλ) multiplier.

6

