
Statistical Techniques in Robotics (16-831, F10) Lecture#09 (Wednesday September 28)

Normative View, Induction and Learning

Lecturer: Drew Bagnell Scribe:Sankalp Arora 1

Figure 1: Drew Bagnell, with pipe and corduroy jacket, channeling the philosopher David Hume
through elaborate chicken analogies.

1 Lecture Abstract

This lecture begins with a small discussion on logic and normative view of the world. Then we
will question the nature of induction and its use as a tool for modeling and making decisions about
the world. We will explore the limits of the inductive process, and in the process, prove how well
different online induction algorithms(e.g - weighted majority, randomized weighted majority etc.)
perform in relation to each other through the new concepts of loss and regret.

2 Normative View of the World

Normative view is concerned with identifying the best decision to take or inference to make, assum-
ing an ideal decision maker who is fully informed, is able to compute with perfect accuracy and is
fully rational. It assumes probability based inference and general decision making can and should
only be defined by pure logic. The normative view suggests that any decision maker or inference
engine that doesnt follow the aforementioned rules is wrong or invalid. Hence it does not state the
amount of error induced in a system if approximation techniques(like finite number of particles in

1Some content adapted from previous scribes: Mark Desnoyer, Andres Rodriguez, Ben Eckart

1

a particle filter) are used for the lack of adequate computation resources, time or knowledge. Suc-
cintly put the normative view considers “known unknowns”, not the“unknown unknowns”. And
this fallacy makes the normative view of little use in real life.

3 Induction

Our standard justification for the use of probability theory is that it seems like the “reasonable”
thing to do. Logic is certainly reasonable, and probability naturally and uniquely extends our
notion of logic to include degree-of-belief type statements. Thus, if one accepts logic, one must
accept probability as a way of reasoning about the world.

In all the probabilistic systems discussed so far (e.g. localization and mapping), we can momentarily
discard our normative view by looking at their common elements. At the very core, something like
mapping, for example, can be seen simply as an induction problem. We take in data about world,
and using prior knowledge, we make inferences, and then predictions using the inferences. In fact,
Bayes’ rule can be seen as the “canonical” way to do these operations. Induction is a method to
predict the future based on observations in the past, and to make decisions from limited information.
Thus, we can look generally at induction itself in order to arrive at answers to certain fundamental
questions behind many robotic learning systems. Questions such as: “Why does inductive reasoning
work?”, “When does it fail?”, and “How good can it be?” will tell us about the nature of learning
and lead us to unique notions of optimality with regard to worst-case adversarial conditions.

3.1 Induction from a Chicken’s Perspective

We begin with an illustrative example of how inductive reasoning can fail. Imagine you are a
chicken. Every day of your life, the farmer comes to you at a certain time in the day and feeds
you. On the 1001th day, the farmer walks up to you. What do you predict? What can you predict
other than that he will feed you? Unfortunately for you, this day the farmer has decided to eat
you. Thus, induction fails spectacularly. You may object to this example and say that the model
of the world that the chicken was using was wrong, but this is precisely the point of the discussion:
perhaps we can never have a model that perfectly aligns with the real world. Perhaps, you know
vaguely of your impending doom, so you assign a low probability of being eaten everyday. You still
will (probably) guess incorrectly on that 1001th day because your guess of being fed will dominate
your feeling of doom. Furthermore, for any model you bear, an adversarial or random farmer can
always thwart it to force false inductive predictions about your fate each day.

3.2 Three views of induction:

1. The David Hume view. No matter what, your model will never capture enough of the world
to be correct all the time. Furthermore, induction relies heavily on priors made from assump-
tions, and potentially small changes in a prior can completely change a future belief. If your
model is as good as your assumptions or priors, and most assumptions are not likely to be
valid at all, then induction is fundamentally broken. We find this view, although true, is not
very satisfying or particularily useful.

2

2. The Goldilocks/Panglossian/Einstein Position. It just so happens that our world is set up in
a way such that induction works. It is the nature of the universe that events can be effectively
modeled through induction to a degree that allows us to make consistently useful predictions
about it. In other words, we’re lucky. Once again, we do not find this view very satisfying or
particularly useful.

3. The No Regret view. It is true that you cannot say that induction will work or work well for
any given situation, but as far as strategies go, it’s provably near-optimal. This view comes
from the outgrowth of game theory, computer science, and machine learning. This thinking
is uniquely late 20th century.

4 On-line learning Algorithms

Though we can never be certain of our prediction (as a chicken, we will always be eaten at some
point), we can form a strategy that will do nearly as well as we could possibly hope given our
current situation. In other words, we can always do something which is the best we can do (and
we can prove this is the case).

We begin by studying the problem of “predicting from expert advice.” Our notion of an expert is
simply something that makes a prediction. Unfortunately, “expert” is somewhat of a misnomer,
given that an expert can give bad, random, or adversarial advice. It is fruitful to think of a collection
of experts as a collection of hypotheses about the world.

Lets say each day we have the same n experts that predict from the set {fed, eaten}. Or perhaps
a less morbid approach would be the example of predicting whether a given day will be sunny or
rainy. In this case, the experts predict from {rainy, sunny}. After they make their prediction, the
algorithm makes its own prediction, and then finds out if it actually it rains. Our goal is to perform
nearly as well as the best expert so far (being competitive with respect to the best single expert).
To quantify these intuitions, we will need the concepts of loss and regret.

4.1 Loss and Regret

To formalize the No Regret view, let’s define a loss function L where:

L(wrong) = 1

L(correct) = 0

Therefore, for the optimal play, we want to minimize

∑
t

L(pt)→ 0

3

Optimal play may be impossible. In this formulation, we cannot guarantee any performance (David
Hume view) because the algorithm can be arbitrarily bad if the problem is hard to predict or
adversarial.

We’ll assume that we have some experts that predict either 0 or 1. Remember, the experts are
arbitrary and can be based on a number of things. Examples:

• Always constant

• Markov expert (repeats what it last saw)

• Random (flips a coin and decides the state of the world)

• Something complex (consults the color of the sky)

• Adverserial expert (an expert which somehow knows what state the world is going to be in
and predicts the opposite)

• etc..

If we consult N experts, and we want to do nearly as well as the best expert, we can define regret
as:

Regret =
∑
t

[Lt(algorithm)− Lt(e∗)]

where e∗ is the best expert at time t

Therefore, our goal is to make regret scale more slowly than time, such that:

lim
t→∞

Regret

t
= 0

An algorithm that satisfies the above formula is called “no regret.” Note that even though we
cannot minimize loss, we can minimize regret. A side effect of this statement is that a no regret
algorithm can still have high loss. This situation occurs when David Hume’s pessimism reigns and
no potential model for the world is very good. Minimizing regret in this case is like saying that we
can do “as good as the best of the bad things.” However, in situations where no regret results in
low loss, Einstein wins out and we end up with a solution that models the world well and can make
good predictions.

We will now discuss three attempts to minimize regret: follow the leader, majority vote, and
weighted majority.

4.2 Try #1: Follow the Leader

We can also call this algorithm the “best in hindsight” algorithm. We naively pick the expert that
has done the best so far and use that as our strategy for timestep t. Unfortunately, blindingly
picking the leader can lead to overfitting.

4

Let us assume there are 2 experts :

e0 7→ which always predicts 0

e1 7→ which always predicts 1

Also, let us assume world is such that is alternatively toggles between 0 and 1 with 1 being the
initial state. Let the algorithm be designed such that whenever there is the algorithm picks e0.

Correct count for e0 Correct count for e1 Prediction (Best expert in hindsight) World State

0 0 e0 1
0 1 e1 0
1 1 e0 1
1 2 e1 0
. . . .
. . . .
. . . .

From table 1 it can be seen that the algorithm in this case is performing worse than each of
the experts. In this example we hope we can somehow take the opinion of all the experts into
consideration while making a decision. This is exactly what the next suggested algorithm does.

4.3 Try #2: Majority Vote

Given many experts, this algorithm goes with the majority vote. In a sense, it never gets faked
out by observations, because it doesn’t pay attention to them. In a statistical sense, we can say
that this algorithm is “high bias, low variance,” since it is robust but not adaptive, while algorithm
#1 is “low bias, high variance,” since it is adaptive but not robust. This algorithm can clearly
perform much worst than the best expert as it may be the case that majority of the experts are
always wrong but one is always correct. To overcome this fallacy we need a method that adapts
and decides what experts to respect while predicting, based on the past performance of the experts.
To this end we try weighted majority algorithm.

4.4 Try #3: Weighted Majority

Another approach is to notice that at each timestep, each expert is either right or wrong. If
it’s wrong, we can diminish the voting power of that particular expert when predicting the next
majority vote.

More formally, this algorithm maintains a list of weights w1, ..., wn (one for each expert x1, ..., xn),
and predicts based on a weighted majority vote, penalizing mistakes by multiplying their weight
by half.

Algorithm

1. Set all the weights to 1.

2. Predict 1 (rain) if
∑

xi=1wi ≥
∑

xi=0wi, and 0 otherwise.

5

3. Penalize experts that are wrong: for all i s.t. xi made a mistake, wt+1
i ← 1

2w
t
i .

4. Goto 2

Analysis of Algorithm The sum of the weights is w ≤
(
3
4

)m
n =

(
4
3

)−m
n, where m is the

number of mistakes. The weight of the best expert w∗i =
(
1
2

)m∗
= 2−m

∗ ≤ w. Therefore,

2−m
∗ ≤ w ≤

(
4

3

)−m
n.

Taking the log2 and solving for m gives,

m ≤ m∗ + log2 n

log2
4
3

= 2.41(m∗ + log2 n)

Thus, the number of mistakes by this algorithm is bounded by m∗ plus an amount logarithmic in
the number of experts, n.

To get a more intuitive feel for this last inequality, imagine the case when one expert makes no
mistakes. Due to the binary search nature of the algorithm, it will take log2 n iterations to “find”
it. Furthermore, if we keep adding good experts, the term m∗ will go down, but the term log2 n
will rise (a fair trade in this case). Adding bad experts will probably not change m∗ much and will
serve only to add noise, showing up in a higher log2 n. Thus, we can see the trade-offs involved
when adding more experts to a system.

4.5 Randomized Weighted Majority Algorithm

In this algorithm, we predict each outcome with by picking an expert with a probability proportional
to its weight. We also penalize each mistake by β instead of by one-half.

Algorithm

1. Set all the weights to 1.

2. Choose expert i in proportion to wi.

3. Penalize experts that are wrong: for all i s.t. xi made a mistake, wt+1
i ← βwti .

4. Goto 2.

Analysis The bound is

E[m] ≤ m ∗ ln(1/β) + ln(n)

1− β
.

It is important to note here that the expectation in the expression is caused by probabilistic nature
of the method of selecting an expert for prediction. Also note that since we are picking a single

6

expert, we don’t have to worry about figuring out a way to combine multiple experts and can easily
work in a space where the experts are predicting abstract things like whether the object seen is a
phone,ocean or moon.

Generally, we want β to be small if we only have a few time steps available and vice-versa.Although
β can also be time-varying, for example if you start with a large number of experts with a belief
that some of the experts are good at predicting the world at the next timestep. In such a case we
would want the β to be high initially to reach to the correct experts quickly and then decrease the
value of β with time to avoid over-fitting. This algorithm serves to thwart an adversarial world that
might know our strategy for picking experts, or any potential collusion between malicious experts
and the world.

5 Introduction to Next Lecture

5.1 General Weighted Majority Algorithm

Algorithm

1. Set all the weights to 1.

2. Predict expert i in proportion to wi.

3. Receive the correct value yt.

4. Adjust weights s.t. wt+1
i → wti exp−εl(i,yt) ∀i, where l is the lost function, and ε is the penalizer.

5. Goto 2.

Analysis The bound is

E[R] ≤ ε
∑

l(i∗) +
1

ε
ln(n),

where R is the regret. If ε is large, we learn quickly. If ε is small, we learn slowly but we’ll have
little regret.

5.2 Convex Sets and Convex Function

In a convex set, the line between any two points in the set is also in the set. A convex function can
be defined s.t.

f(ax1 + bx2) ≤ af(x1) + bf(x2),

where a+ b = 1, and a, b ≥ 0.

7

6 Suggested Readings

1. Avrim Blum Online Learning survey (http://www.cs.cmu.edu/ avrim/Papers/survey.ps.gz)

2. Probability: The Logic of Science, http://bayes.wustl.edu/etj/prob/book.pdf, Chapters 1 and
2 (you can skim over the derivations); Probabilistic Robotics, Chapters 1 and 2

8

