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Sample-Based Filters and Normalized Importance Sampling

Lecturer: Drew Bagnell Scribe: Elliot Cuzzillo

1 Filtering

We have seen Bayes filters applied to Markov localization, and applied to occupancy or density
mapping. We encounter problems with Bayes filters when either the Markov or the Bayes assump-
tions are violated; that is, when there are correlations in time, or correlations between sensors.
Also, we sometimes encounter computational complexity issues with Bayes filters.

So, we explore a new kind of filtering which may help with these problems: Monte Carlo sample-
based filters.

2 Background

Note that when we take the expectation of an expression E[f(X)], we actually are giving two
arguments to the expectation function: a probability distribution or density function p, and a
function f . Then expectation is always an integration.

Monte Carlo is a method by which we might do this integration. We have

{X}1...a

a vector random variable. If all the Xi are independent, then we have P ( ~X) =
∏R

i=1 Pi(Xi). If all
the distributions are the same, it’s independently identically distributed, or “i.i.d.”

Also, the Strong Law of Large Numbers says that YR = 1/R
∑

f(Xi) converges to EP [f(Xi)] as R
grows large.

3 Monte Carlo

Now suppose we have a filter, and a belief distribution belt(x). Then from the Strong Law of
Large Numbers, we can answer any question we want about the distribution. For instance, if we
want the variance, all we need is Var(X) = E[X2] − E[X]2 = YR = (1/R

∑
X2

i ) − (1/R
∑

Xi)2.
Note that the computational complexity of finding the variance is independent of the number of
dimensions of ~X; it’s only dependent on the number of samples. This is a nice property of Monte
Carlo integration.
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4 Application to Robot Filtering

Suppose our robot is in a given state x0, and we want to sample from bel(x1). Which is to say,
we want to sample from p(z1|x1)p(x1|x0)

p(z1) where zi is our observation at time i. It’s most often not
difficult to sample from the motion model from a particular state, since the motion model is usually
a well-behaved parametric distribution. But sampling from all states that are possible given one
observation is difficult.

This leads to the formulation of the problem of importance sampling.

5 Normalized Importance Sampling

The problem is, we have a distribution q(x) from which we can easily take samples, and another
distribution p(x) we can’t sample directly, but which we would like to sample from. Then,

Ep[f ] =
∑

p(x)f(x) =
∑

p(x)f(x)
q(x)
q(x)

=
∑

q(x)
(

f(x)p(x)
q(x)

)
= Eq[w(x)f(x)]

where w(x) = p(x)
q(x) . In our robot-filtering application, q(x) is the distribution of current states given

only past states (i.e. the motion model), and p(x) is the full belief distribution, belt(x).

For convenience, we then say that Ep[x1] (the goal of our computation) is proportional to 1/R
∑r

i=1 p(z1|x1)f(x)
(where we say proportional because the distribution is not normalized to 1). So, after observing
this, we normalize:

w̃i = p(z1|x1), and wi = w̃iP
i w̃i

.

So, as an algorithm:

Algorithm 1 Basic Particle Filter Algorithm
for all i do

sample xi
0 from p(x0)

end for
for all t do

for all i do
sample xi

t from p(xt|xi
t−1)

wi ∗ = p(zt|xi
t)

end for
ŵi = wiP

wi

end for
E[f(x)] =

∑
i ŵif(xi)

Note: If the sensor model is too accurate, it is likely that all the wi will be zero, and the algorithm
will fail.
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5.1 Resampling

This way, we have an accurate model if we have infinitely many samples, but in practice, the motion
model will spread samples out and leave highly likely areas underresolved, and highly unlikely areas
with many unnecessary particles with low weight.

To fix this problem, we periodically resample our particles according to their weight, sampling
from the distribution P (x = xi) = wi, where wi is the normalized weight of xi. (There will be
duplicates.) We then reset all the wi to be equal. Our algorithm is now known in various fields
as Normalized Importance Sampling with Resampling, Sampling Importance Resampling, Particle
Filter, or Condensation Filter.

6 Extensions

However, this is still problematic. To begin with, if we always resample with the same frequency, but
nothing has changed in the world, we will lose variance in our particles through random attrition.
Some particles will go unsampled in a random resampling, despite being not any less likely. One
idea is to do Low-Variance Resampling, where you sample particle xi at least n times if wi ·R is at
least n, and then randomly sample from the fractional remainder.

Another idea is to adaptively sample more particles when the sum of the un-normalized weights is
too small, because small un-normalized weights indicate highly unlikely particles.

7 Further Extensions

In some cases where the motion model is highly inaccurate but the observation model gives a very
accurate estimate of the state is to sample directly from the observation model and then weight by
the likelihood under the motion model.

Almost all particle filters in practice sample from something smarter than the naive motion model;
for instance, some update a Kalman filter on each timestep, and then sample from the resulting
Kalman filter distribution. Alternately, one can use a lower-dimensional particle filter, capturing
less of the state, and sample from that. In general, real particle filters make an attempt to use
some of the observation information in the sampling step, and then correct the sampling with the
true observation distribution. These methods are related to Rao-Blackwellization, which will be
discussed later.
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