
Statistical Techniques in Robotics (16-831, F11) Lecture 6 (9/17/12)

Graphical Models

Lecturer: Drew Bagnell Scribe: Adam Stambler 1

1 Graphical Models

Graphical models are a framework for reasoning about uncertain quantities and the structural
relationships between them. They are a union of probability and graph theory. Nodes represent
random variables and edges represent the links, or relationships between these random variables.
Graphical models are analogous to a circuit diagram — they are written down to visualize and
better understand a problem.

Graphical models can be viewed as a:

• Communication tool that helps to compactly express dependencies between beliefs about
a system.

• Reasoning tool that can be used to extract relationships that were not obvious when for-
mulating the problem. In particular graphical models enable us to visualize conditional
independence.

• Computational skeleton that helps organize how we perform computations on random
variables.

We will examine four types of graphical models:

• Bayes’ Nets (Directed Graphical Models)

• Gibbs Fields (Undirected Graphical Models)

• Marlov Random Fields (Undirected Graphical Models)

• Factor Graphs (Undirected Graphical Models)

2 Bayes’ nets

One of the most common graphical models is called a Bayes’ net. Bayes’ nets are also known as
Bayesian networks, belief networks, directed graphical models, and directed independence diagrams.
In short, a Bayes’ net is a directed acyclic graph with nodes representing uncertain quantities
(random variables) and edges that encode relationships between them (often causal).

As an example, we take the random variables A, B, C, and D. Without any knowledge about
their dependencies, we can write down the joint probability as P (A,B,C,D). Every variable is

1Based on 2011 scribe of Yair Movshovitz-Attias and 2010 scribe by Brian Coltin and Hugh Cover
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Figure 1: (Left) A generic Bayesian network of 4 random variables. (Right) A bayesian network
which uses prior independence information to remove edges.

dependent on each other. In its graphical model, Figure 1 Left, every node is connected to each
other. When we deal with this generic system P (A,B,C,D), the chain rule of probability allows
us to to factorize probability distribution as

P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|A,B,C)

This factorization always holds, and is not dependent on any particular graphical model. To verify,
rename (B,C,D) to γ, and so

P (A, γ) = P (A)P (γ|A)

and continue recursively. This is just a recursively application of the definition of conditional
probability to the probability distribution. It is known as The Chain Rule of Probability.

However, in real systems we know often know more about how they are related. In Figure 1 right,
we encode this prior knowledge in the Bayes’ net by removing edges (A,D) and (B,D) in the graph.
These independences are then encoded in chain rule by expanding the probability as :

P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|C)

For an arbitrary Bayes’ net with nodes x1, x2, . . . , xn ∈ X, we can derive the joint distribution
P (X) as the product of each node xi given its parents π(xi).

P (X) =
∏

xi

P (xi|π(xi))

The simplest case of this expansion can be seen via Figure 2. P (A,B,C,D) = P (A)P (B|A)P (C|B)P (D|C)
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Note that this factorization strategy only works if there are no cycles in the graph, and that Bayes’
nets are acyclic by definition.

Simple Example

A B C D

Figure 2: A simple Bayesian network.

One should note, that when we write these Bayes networks out based on our experience, we will
often encode the relationships causally. We will draw an edge from A to B because A causes B
normally. However, it is important to remember that the arrow’s direction does not need to be
causal. It just needs to show the correlation of the two variables probabilities. One should think
of A as influencing B and C rather than A causing B and C. If all the arrows on a Bayes’ net are
flipped, then the resulting Bayes’ net is equivalent to the original, since they both represent the
same joint probability distribution.

In general, the absence of arrows is important in a Bayes net: less arrows mean more structure.

Note that in the Bayes net of Figure 1 if we add an edge between nodes A and D and between
nodes B and D, we remove all structure form the graph!

2.1 Determining Dependencies

Bayes’ nets can be used to quickly determine whether pairs of variables are dependent on each
other. This is done by following all available paths between the two variables and checking if the
path is ’blocked’. A path is any sequence of edge connected nodes leading from the first variable to
the second (Note that edges can be traversed opposite to their direction). Blockages are determined
by visiting each node on a path and checking the structure of surrounding nodes and edges against
3 rules explained below.

Two variables are independent if all available paths between them are blocked. Any unblocked
paths show a possibility of dependence. It should be noted that this analysis can only be as good
as the Bayes’ net it is based on; an incomplete net may be missing paths that show a dependence.

2.1.1 Rule 1: Markov Chain

Figure 3 is a Bayes’ net representation of a simple Markov chain.

An example of such a chain is the process of robot localization, although the usual zi and ui terms
have been omitted for simplicity. If the robot knows the current state, x2, then it does not need
any information about past states, x1, in order to determine the next state, x3. For example if the
robot can only be on the 1st or 2nd floor of a building and it knows that it’s previous state was
that it was on the 1st floor. As there were no inputs any previous information about the robot’s
state is irrelevant, it must still be on the 1st floor. This is the same as saying that x1 and x3 are
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Figure 3: A Bayesian network representation of a Markov chain.

independent if x2 is known.
P (x3|x2, x1) = P (x3|x2)

In the case where x2 is not known then knowledge of past states could provide information on the
current state x3. If our robot did not know it’s state at x2 but knew it was on the 1st floor at x1
then, given no inputs, x3 has a high probability of being the 1st floor. This is the same as saying
that x1 and x3 could be dependent if x2 is not known.

A B C

Figure 4: Markov chain is BLOCKED given B.

The rule is therefore that in a chain of nodes, as shown in Figure 4, C is independent from A if
B is known. This means there is a blockage on any path passing through a Markov chain with a
known middle node.

2.1.2 Rule 2: Two Parents, One Child, converging arrows (The Bagpipes Case)

CMU

GPA Bagpipes

Figure 5: The Bagpipes Case.

Figure 5 is a simplified Bayes’ net representation of the process of getting into CMU. Carnegie
Mellon wants to admit students with a high GPA but it is also important to keep the school
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bagpipe band strong. A student’s chances of getting into CMU can therefore be influenced by their
GPA and also by their bagpipe playing skills.

Given any student applying to CMU knowing that they have good grades doesn’t tell us anything
about their bagpipe skills, the two are independent. This is changed if we then discover that
the student was admitted. Now if we know they are good at the bagpipes our expectation of their
grades is reduced as their admittance has been ’explained away’. The reverse is true if we know they
have particularly high grades. Thus knowledge about admittance creates a dependence between
the student’s bag piping skills and their GPA.

A

B

C

Figure 6: Two parents, one child case is NOT BLOCKED given B.

The rule is therefore that in a ’two parents, one child’ case, as shown in Figure 6, A is dependent
on C if B is known. The inverse is also true, A is independent from C if B is not known. This
means that there is a blockage on a path passing through the ’two parent, one child’ case if B is
unknown.

2.1.3 Rule 2 Extension: Addition of Further Children

Rule 2 can be extended with the addition of descendents of the node. Figure 7 shows an example
were an alarm can be set off by either an earthquake or a burglar and the police are called when the
alarm goes off. As with the bagpipes example the presence of an earthquake and a burglar become
dependent given the alarm going of. This is because if we know the alarm has been activated
knowledge about a burglar reduces the liklihood of there having been an earthquake. Similarly,
if we have no knowledge of the alarm going off, but there is a police visit, we can follow a chain
of reasoning such as a police visit is more likely to have happened if an alarm went off, so the
probability of the alarm going off increases, which then, coupled with knowledge about a burglar,
reduces the probability of an earthquake.

The extension of rule 2 is therefore that if a descendant of the node into which the arrows converge
is known the path is unblocked. With reference to Figure 8 the path is only blocked if B and any
descendant of B are unknown.

2.1.4 Rule 3: One parent, Two Children

This rule is the case of some common cause for two events. The example in Figure 9 will help us
understand the last rule. If we do not know the price of gas, information on the food price will
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Figure 7: Home Alarm Example.

provide information on the likelihood of walking to work: If food price rises, it indicates that the
gas price might have gone up, and then this can affect the likelihood of walking. If however, we
know the price of gas, information about food price will not change our beliefs about the likelihood
of walking.

Rule 3 is therefore that in a ’one parent, two children’ case, as shown in Figure 10, A is independent
from C given B. This means that there is a blockage on a path passing through this case if the
parent, B, is known.

2.1.5 Example:

Some question we would like to know how to answer about a Bayes net, such as the one in Figure 1
are:

• Are two variables independent? A ⊥ D ?

• Are two variables independent given some other variables? A ⊥ D|C ?

1. A ⊥ D ? No. The path A → c → D is like a Markov Chain and we have not observed C.

2. A ⊥ D|C ? Yes. Both paths are blocked.

3. B ⊥ D|A ? No. The path B → C → D is unblocked.
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Figure 8: Path is NOT BLOCKED given either B or D.

Gas price

Food price Likelihood of walking to work

Figure 9: Rule 3, Gas price example.

2.1.6 Example: Localization

Now we will consider a set of Bayes nets for the navigation and localization of small car. Figure 11
(A) shows the remote controlled car scenario with a human driver sending inputs based on the car’s
actual state. The state is fully observable to the human so there is an edge connecting the state
xt to the control ut+1. If the car is no longer remote controlled, but just follows a preprogrammed
path, we get the Bayes net B. If the scenario is modified such that the car is not remote controlled,
but is rather autonomous, we can reach the Bayes net (C). The robot cannot fully observe its state,
it can only base its action on the sensor measurements.

For each of these models, we want to be able to model the state of the car using a recursive Bayes
Filter. However, our original assumptions for the filter are not necessarily valid for these graphical
models. We can test the assumptions using our new dependence rules. In the derivation of Bayes
Filter in ”Probabilistic Robotics” assumes that xt−1 is independent of ut. When we look at the
remote control example the two paths between x1 and u2 need to be tested. The path via x2 is a
case of rule 2 where both x3 and z3 are unknown and so is blocked, however the direct path cannot
be blocked. Therefore there does exist a dependency and the assumption is incorrect.

On the other hand, with the preprogrammed path there is no edge between the control and prior
state. This could be a preprogrammed path to move forward for 5 seconds then turn 90 degrees
to the left and continue. The commands are independent of the position and would be the same
regardless if the car hit a wall or continued without incident.
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Figure 10: One parent, Two Children case is BLOCKED given B.

Finally, with the autonomous navigation, we get a more interesting case. In this case, we know x2
and z1. This means that the path via x2 is blocked and the path via z1 is a case of rule 1 where
z1 is known and therefore blocked. Since all paths are blocked and the assumption that xt−1 is
independent from ut is valid.

2.1.7 Example: Landmark Based Mapping

The Baysian network on Figure 12 displays a landmark based mapping scenario. Note that this
network does not take into account that not seeing a landmark also provides information.

Some question we could ask about this network:

1. l1 ⊥ l3? Yes. Everything goes through z1, use rule 2.

2. l1 ⊥ l3|z1, . . . , z5? No, but if we knew the states than yes.

This means that if we know the states of the robot we can run a separate filter for each landmark,
because they are independent. This is known as D-Separation.
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Figure 11: Three car navigation bayes nets. (A) The car is a remote control car. A human observes
the full state of the car and directs it. (B) The car follows a preprogrammed path and does not
use its sensor measurements to adjust its path. (C) The car is autonomous and uses its sensor
measurements to guide its next control.
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Figure 12: A Bayesian network representation of landmark based mapping.
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