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1 Gaussian Processes

1.1 Introduction

There are many machine learning problems for which regression is a viable solution. Examples of
linear regression methods include Bayes linear regression (BLR) and online convex programming
when applied to square laws. For some problems linear approximations do not provide enough
accuracy in their estimates and nonlinear methods methods like extended kalman filters are re-
quired. Gaussian processes are the state of the art in nonlinear regression methods, but unlike the
previously covered methods it is a non-parametric method with infinitely many parameters.

Gaussian process regression uses a multidimensional gaussian with a dimension for each training
and test point. To compute posterior probability at a test point you condition on the training data
points. For example we can start with two dimensional gaussian with mean µ and variance Σ:

[
y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(1)

We can then find the conditional distrobution P (x2|x1) with the following equations:

µ2|1 = µ2 + Σ21Σ−1
11 (y1 − µ1) (2)

σ2|1 = Σ22 − Σ21Σ−1
11 Σ12 (3)

This entire process can be expanded to match the size of the date set and is covered in more detail
in section 1.5. The next section will formally define gaussian processes and cover how the Σ matrix
is computed from a data set.

1.2 Formal Definition

A gaussian process is a random stochastic process where correlation is introduced between neigh-
boring samples (think of a stochastic process as a sequence of random variables). The same way
that an instance of a random variable is a single sample, an instance of a stochastic process can be
thought as vector of samples:

X = [x1, x2, x3 . . .] (4)

1Some content adapted from previous scribes: Alberto Rodriguez, Stephane Ross
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Figure 1: A plot of the laplace kernel with γ = 1 where x = (0, 0.2, 0.4, . . . , 6). The correlation
quickly tapers off as the distance between data points increase.

Gaussian Processes artificially introduce correlation between close samples in that vector in order to
enforce some sort of smoothness on the succession of samples. The way that correlation is introduced
is by constructing the joint probability distribution of the long vector of samples. Gaussian processes
assume that probability distribution to be a multidimensional gaussian:

p(Xi) =
1

z
e(X−µ)Σ−1(X−µ) (5)

The correlation between samples in the succession Xi depends on matrix Σ. In Gaussian Processes
the covariance matrix is constructed as the Gram matrix of the samples with some desired kernel
κ(·, ·) as the inner product:

Σ =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

...
...

κ(xn, x1) κ(xn, x2) . . . κ(xn, xn)

 (6)

In order to introduce correlation between neighboring samples, the kernel κ is usually designed to
have small support and centered around zero (i.e. a triangular or a gaussian). The kernel usually
can be described as a function of the distance xi−xj and must be symmetric and positive definite.
That is κ(x, x′) = κ(x′, x), and the kernel matrix K induced by k for any set of input is a positive
definite matrix. Example of some kernel functions are given below:

• Squared Exponential Kernel (Gaussian/RBF): κ(x, x′) = exp(−(x−x′)2
2γ2

) where γ is the length
scale of the kernel.
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• Laplace Kernel: κ(x, x′) = exp(−|x−x
′|

γ ) (See in figure 1 for an example).

• Indicator Kernel: κ(x, x′) = I(x = x′), where I is the indicator function.

• Linear Kernel: κ(x, x′) = xTx′.

More complicated kernels can be constructed by adding known kernel functions together, as the
sum of two kernel functions is also a kernel function.

1.3 Gaussian Processes as a Distrobution Over Functions

A gaussian process can be thought of as a gaussian distribution over functions (thinking of functions
as infinitely long vectors containing the value of the function at every input). Formally let the input
space X and f : X → R a function from the input space to the reals, then we say f is a gaussian
process if for any vector of inputs x = [x1, x2, . . . , xn]T such that xi ∈ X for all i, the vector of
output f(x) = [f(x1), f(x2), . . . , f(xn)]T is gaussian distributed.

The gaussian process is specified by a mean function µ : X → R, such that µ(x) is the mean of f(x)
and a covariance/kernel function k : X × X → R such that κ(x, x′) is the covariance between f(x)
and f(x′). We say f ∼ GP (µ, k) if for any x1, x2, . . . xn ∈ X , [f(x1), f(x2), . . . , f(xn)]T is gaussian
distributed with mean [µ(x1), µ(x2), . . . , µ(xn)]T and n× n covariance/kernel matrix KData:

1.4 Inference

Gaussian Processes are useful as priors over functions for doing non-linear regression. Given a
set of observed input and corresponding output values (x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)), and
gaussian process prior on f , f ∼ GP (µ, k), we would like to compute the posterior over the value
f(x∗) at any query input x∗. Figure 2 illustrates this process. Sample functions from a prior
zero-mean GP are first shown on the left, and after observing a few values, the posterior mean and
sample functions from the posterior are shown on the right. We can observe from this that the
sample functions from the posterior passes close to the observed values but varies a lot in region
where there is no observation.

1.5 Computing the Posterior

The posterior can be derived similarly to how the update equations for the Kalman filter was
derived. First we will find what is the joint distribution of [f(x∗), f(x1), f(x2), . . . , f(xn)]T , and
then use the conditioning rule for gaussian to compute the conditional distribution of

f(x∗)|f(x1), . . . , f(xn)

Assume for now that the prior mean function µ = 0. Then the joint distribution of

[f(x∗), f(x1), f(x2), . . . , f(xn)]T

is gaussian:
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Figure 2: Samples from a zero-mean GP prior (Left) and samples from the posterior after a few
observations (Right).


f(x1)
. . .
f(xn)
f(x∗)

 ∼ N




0
0
. . .
0

 , [ KData κ(x∗,x)T

κ(x∗,x) κ(x∗, x∗)

] (7)

where

κ(x∗,x) =


κ(x∗, x1)
κ(x∗, x2)

. . .
κ(x∗, xn)

 (8)

Now using the conditioning rule we obtained that the posterior for f(x∗) is gaussian:

f(x∗)|f(x) ∼ N( κ(x∗,x)TK−1
Dataf(x) , κ(x∗, x∗) + κ(x∗,x)TK−1

Dataκ(x∗,x) ) (9)
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