16831 Statistical Techniques, Fall 2014: Problem Set 3

Name:

Due: Tuesday, November 11, beginning of class

1 Bayesian Linear Regression Prediction

In the Bayesian linear regression problem, we assume that our data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are generated as:

$$
y_{t}=\theta^{T} x_{t}+\epsilon_{t}, \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

with a prior on parameter θ given by $\mathcal{N}\left(\mu_{\theta}, \Sigma_{\theta}\right)$.
Given an x_{t}, we would like to predict y_{t}. In class, we showed, using linearity of expectation, that the mean of the predictive distribution over y_{t} was given by:

$$
\begin{aligned}
\mathbb{E}\left[y_{t}\right] & =\mathbb{E}\left[\theta^{T} x_{t}+\epsilon\right] \\
\mathbb{E}\left[y_{t}\right] & =\mathbb{E}\left[\theta^{T} x_{t}\right]+\mathbb{E}[\epsilon] \\
\mathbb{E}\left[y_{t}\right] & =\mathbb{E}[\theta]^{T} x_{t}+0 \\
\mathbb{E}\left[y_{t}\right] & =\mu_{\theta}^{T} x_{t}
\end{aligned}
$$

What is the variance of y_{t} ?
Hint: For uncorrelated random variables X_{i}

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

2 Conditional Independence in a Gaussian

In the Natural / Canonical Parameterization of a Gaussian, P's sparsity pattern is essentially encoding the graphical model structure of the Gaussian random variables.

2.1

Show that if $P_{i j}=0$ then conditioned on everything else, x_{i} and x_{j} are independent.

2.2

Argue by example why $P_{i j}=0$ does not imply independence even if it implies conditional independence.

