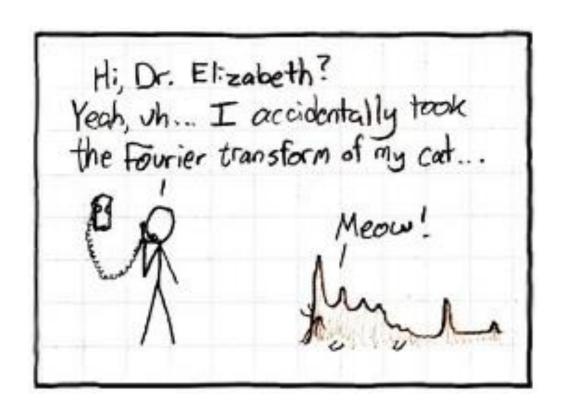
Fourier Transform and Frequency Domain



Overview of today's lecture

- Some history.
- Fourier series.
- Frequency domain.
- Fourier transform.
- Frequency-domain filtering.
- Revisiting sampling.

Slide credits

Most of these slides were adapted from:

Kris Kitani (15-463, Fall 2016).

Some slides were inspired or taken from:

- Fredo Durand (MIT).
- James Hays (Georgia Tech).

Some history

Who is this guy?

What is he famous for?

Jean Baptiste Joseph Fourier (1768-1830)

What is he famous for?

Jean Baptiste Joseph Fourier (1768-1830)

The Fourier series claim (1807):

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.'

... and apparently also for the discovery of the greenhouse effect

Is this claim true?

Jean Baptiste Joseph Fourier (1768-1830)

The Fourier series claim (1807):

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.'

Is this claim true?

Jean Baptiste Joseph Fourier (1768-1830)

The Fourier series claim (1807):

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.'

Well, almost.

- The theorem requires additional conditions.
- Close enough to be named after him.
- Very surprising result at the time.

Is this claim true?

Jean Baptiste Joseph Fourier (1768-1830)

The Fourier series claim (1807):

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies.'

Well, almost.

- The theorem requires additional conditions.
- Close enough to be named after him.
- Very surprising result at the time.

Malus

Lagrange

Legendre

Laplace

The committee
examining his paper
had expressed
skepticism, in part due
to not so rigorous
proofs

Amusing aside

Only known portrait of Adrien-Marie Legendre

1820 watercolor <u>caricatures</u> of French mathematicians <u>Adrien-Marie Legendre</u> (left) and Joseph Fourier (right) by French artist <u>Julien-Leopold Boilly</u>

For two hundred years, people were misidentifying this portrait as him

Louis Legendre (same last name, different person)

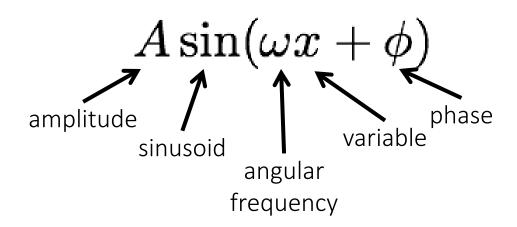
Fourier series

Basic building block

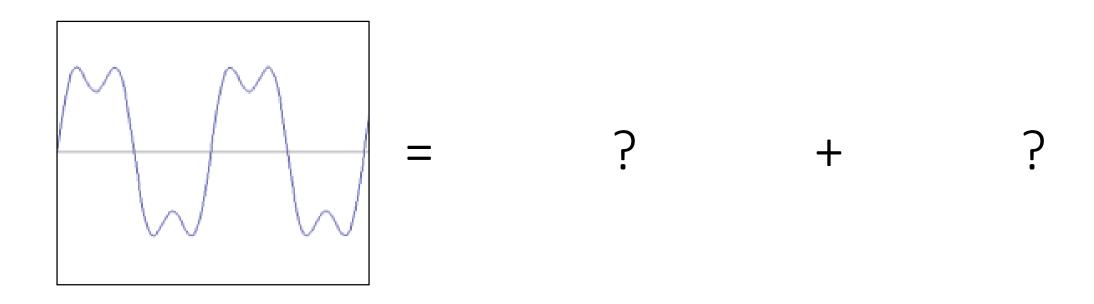
$$A\sin(\omega x + \phi)$$

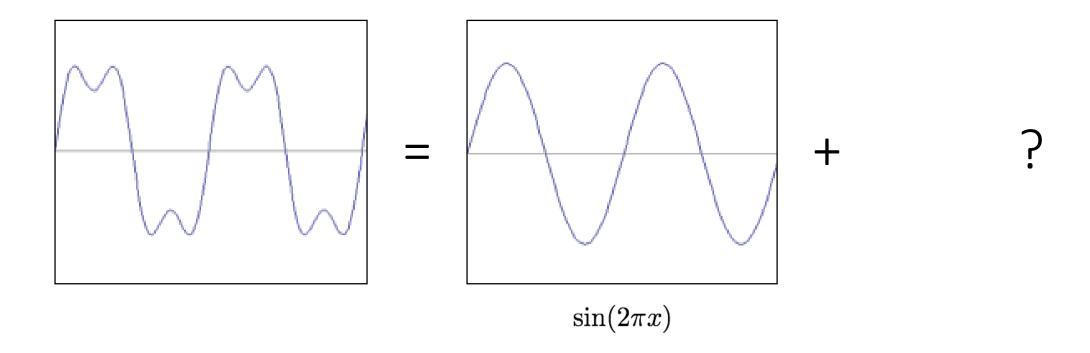
Fourier's claim: Add enough of these to get any periodic signal you want!

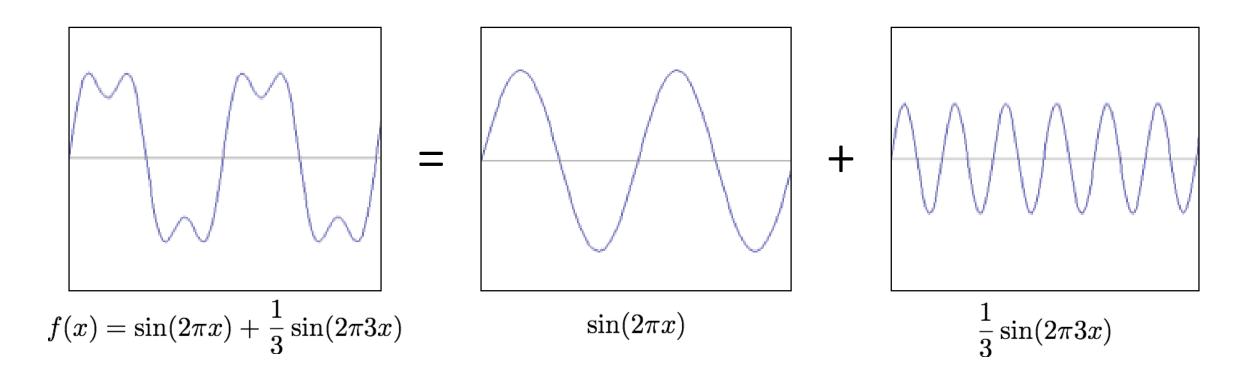
Basic building block

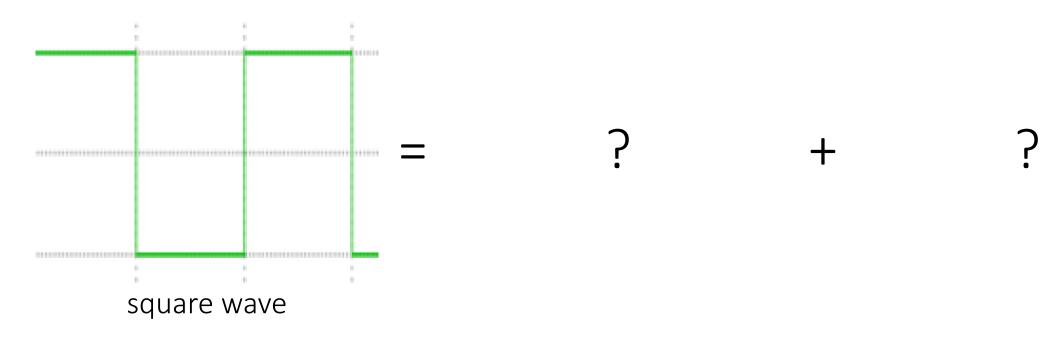


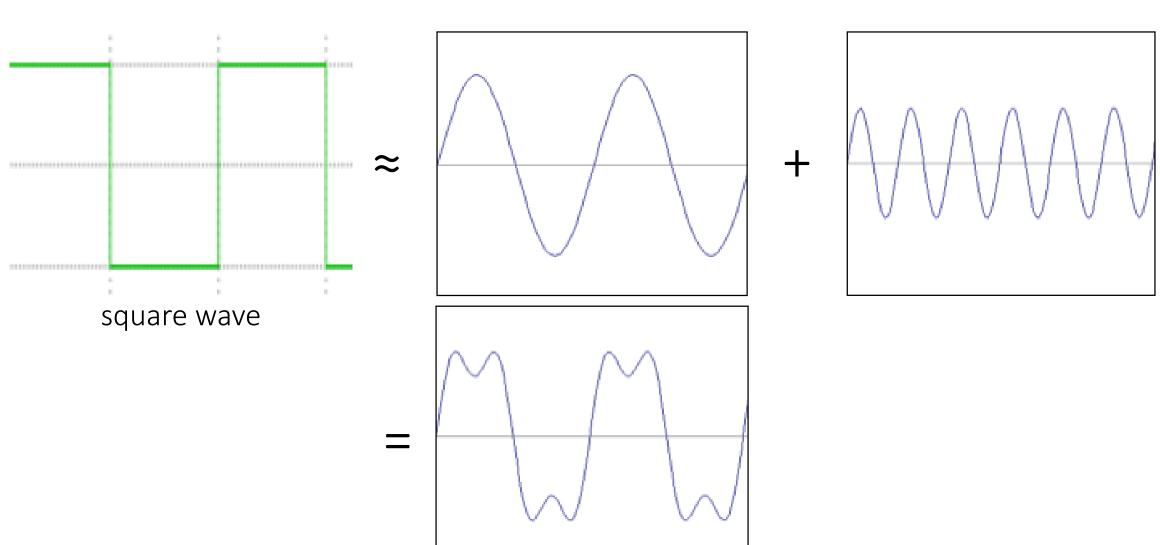
Fourier's claim: Add enough of these to get any periodic signal you want!

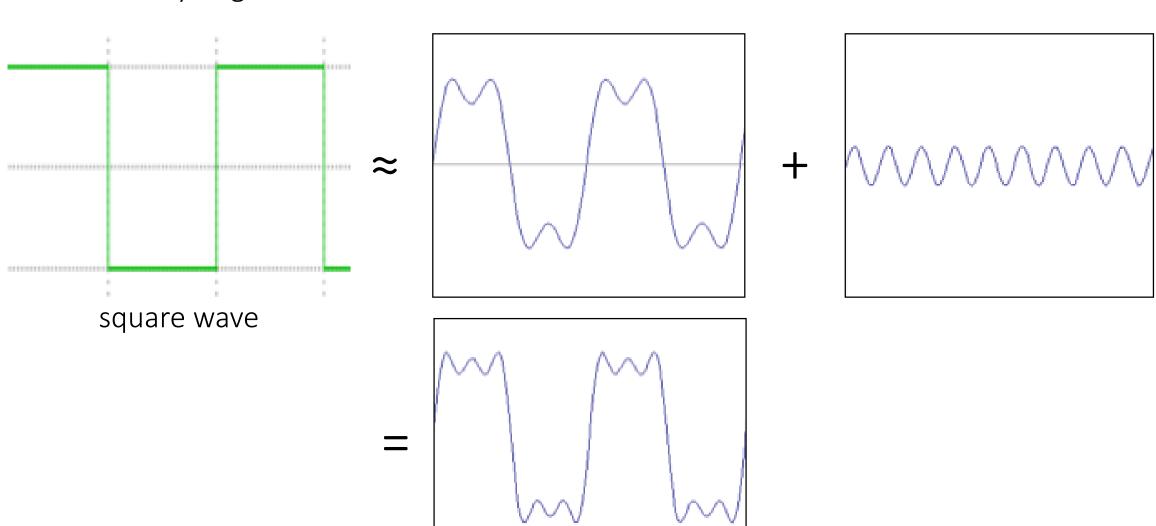


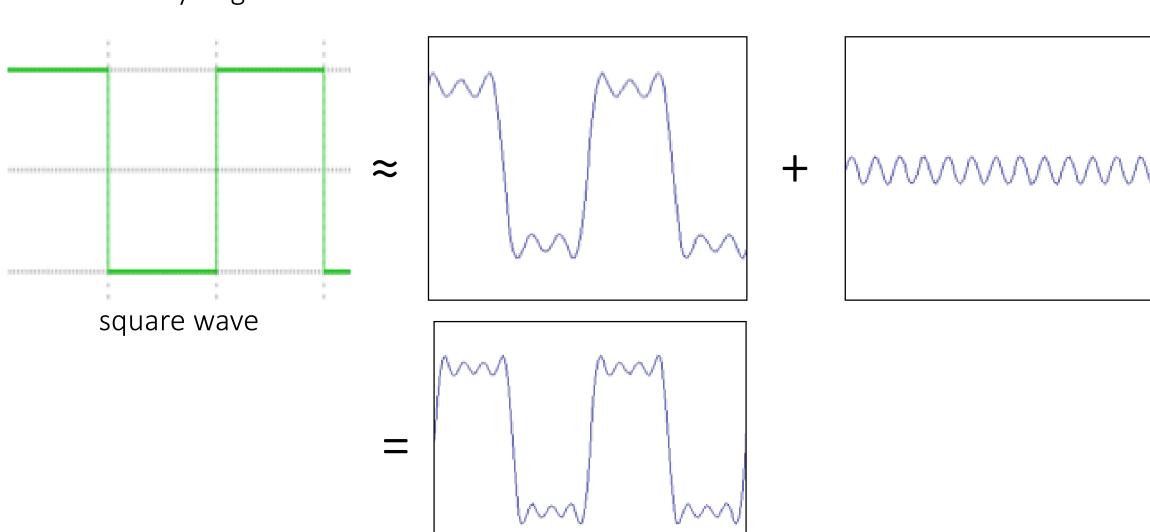


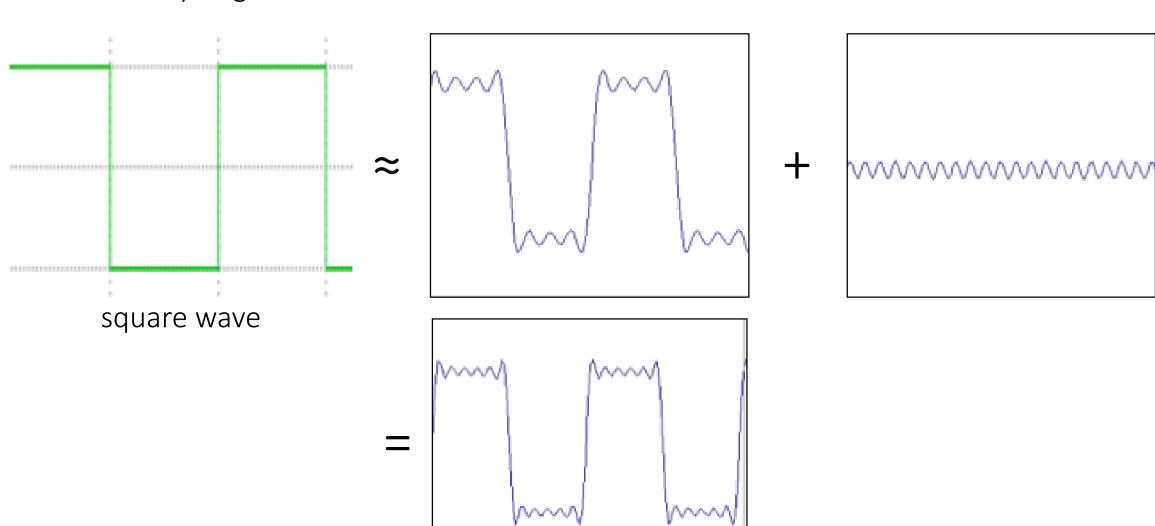


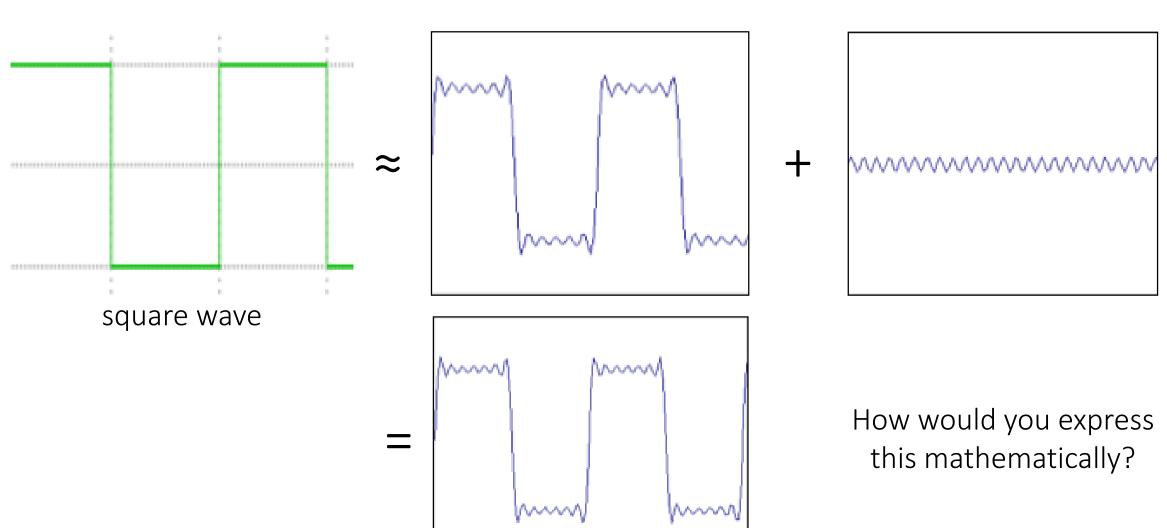


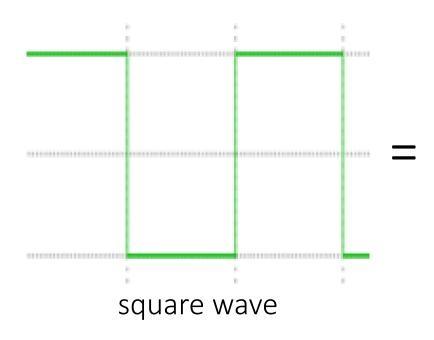








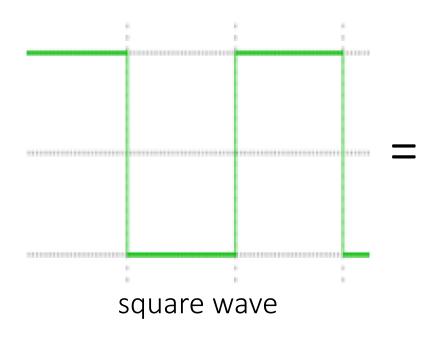




$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

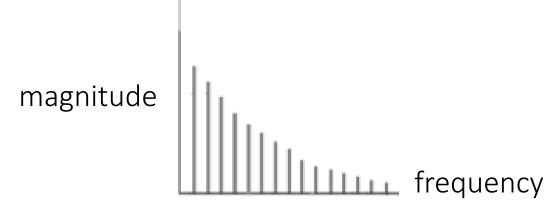
infinite sum of sine waves

How would could you visualize this in the frequency domain?

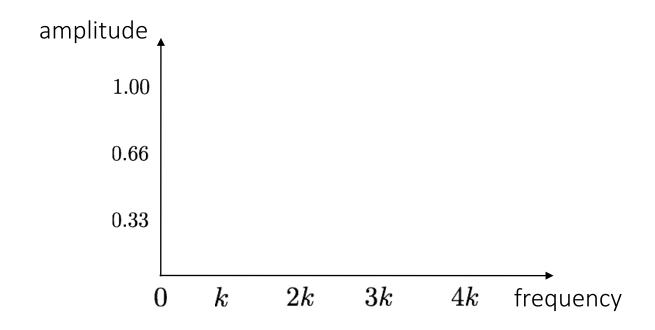


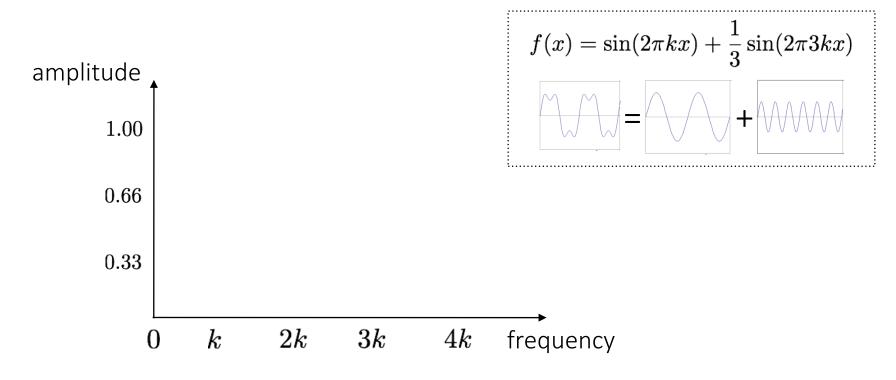
$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

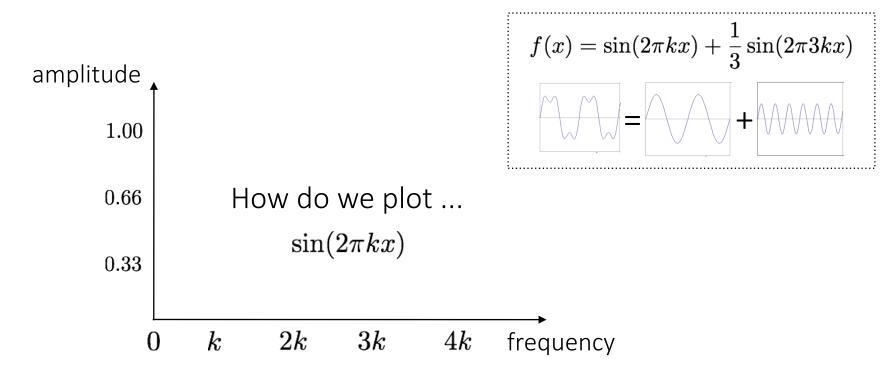
infinite sum of sine waves

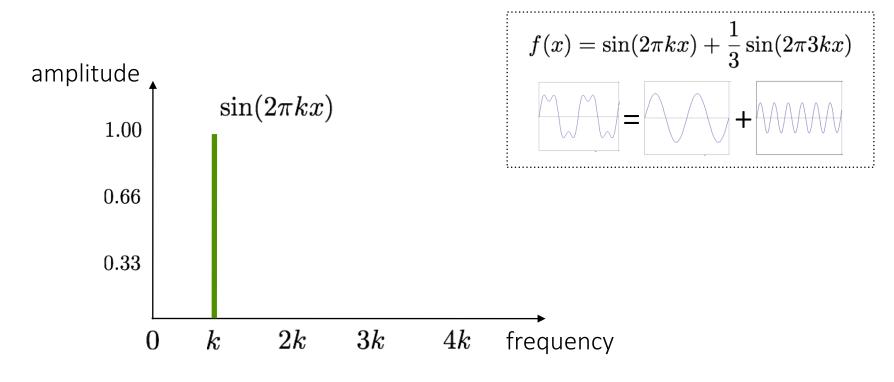


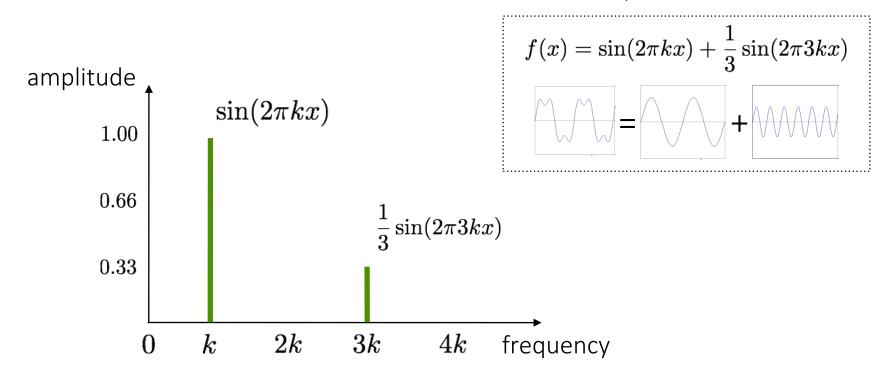
Frequency domain



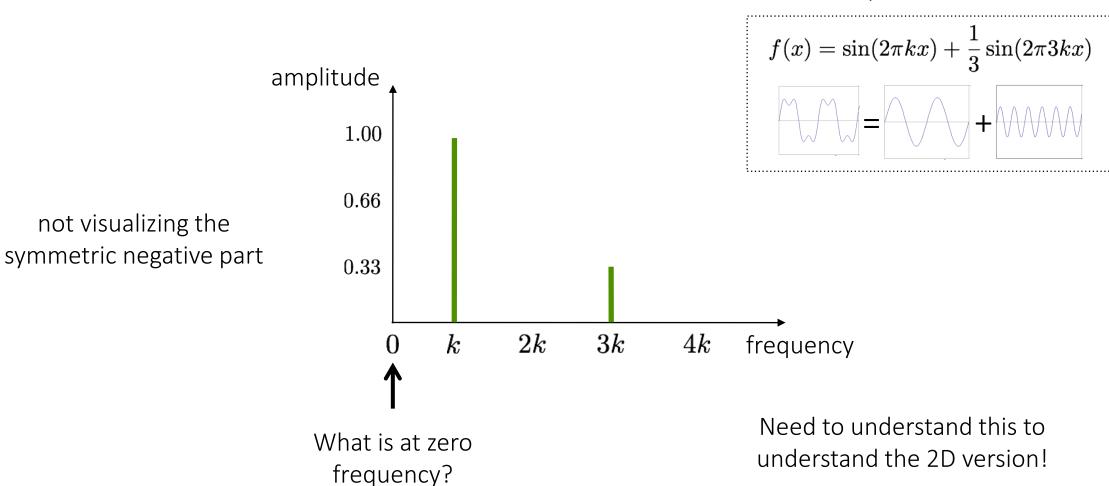




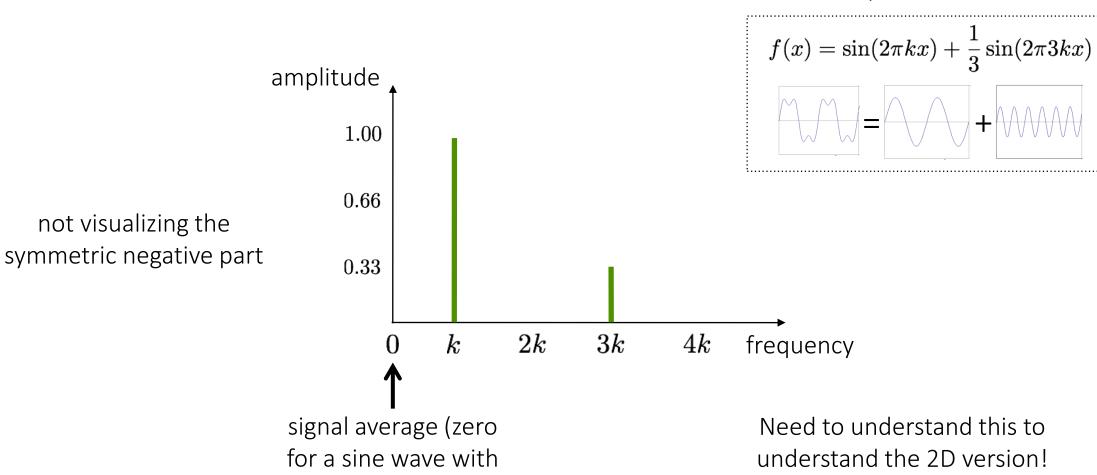




not visualizing the

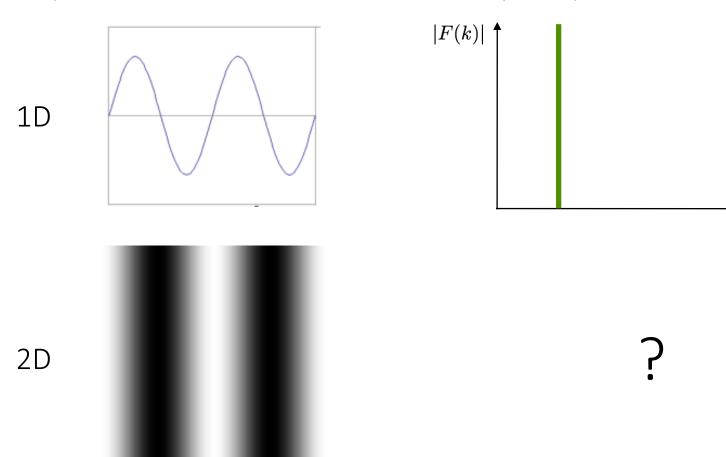


no offset)



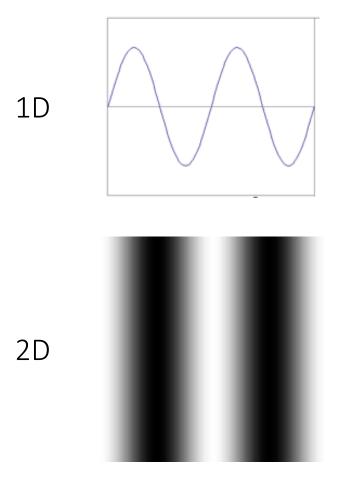
Spatial domain visualization

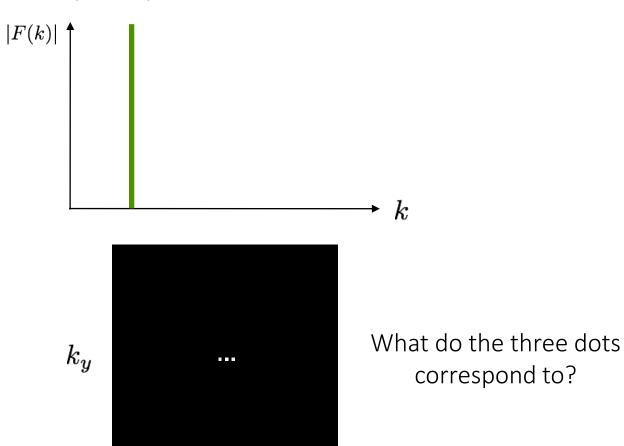
Frequency domain visualization



Spatial domain visualization

Frequency domain visualization

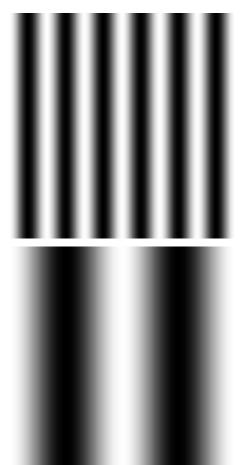




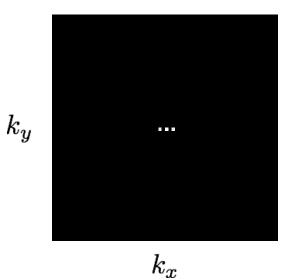
 k_x

Spatial domain visualization

Frequency domain visualization



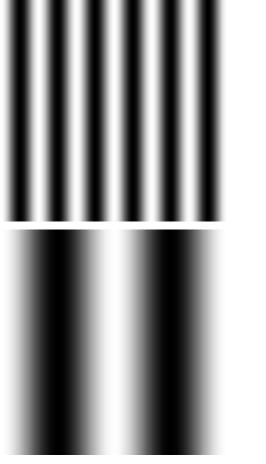
?

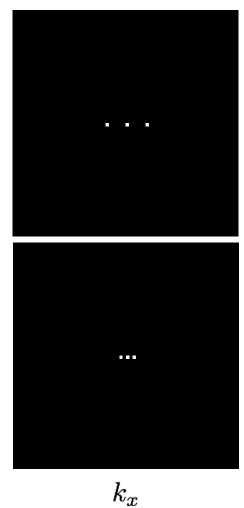


Spatial domain visualization

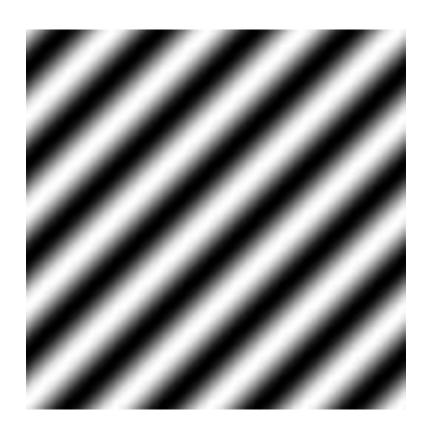
Frequency domain visualization

 k_y

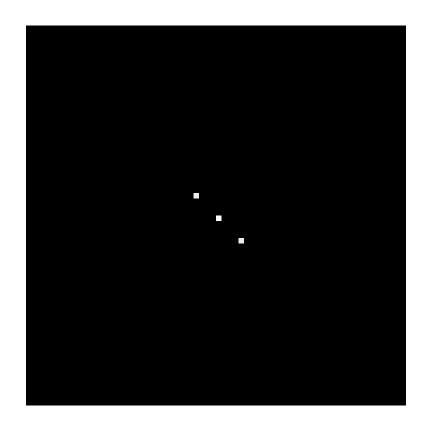




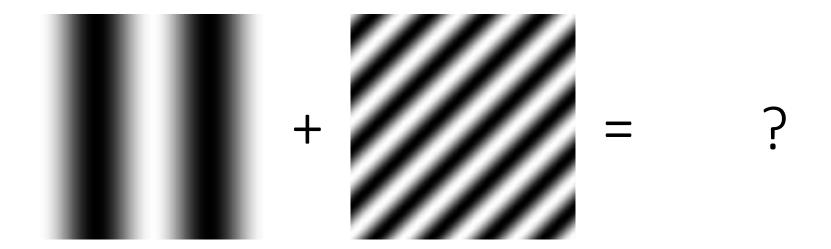
How would you generate this image with sine waves?

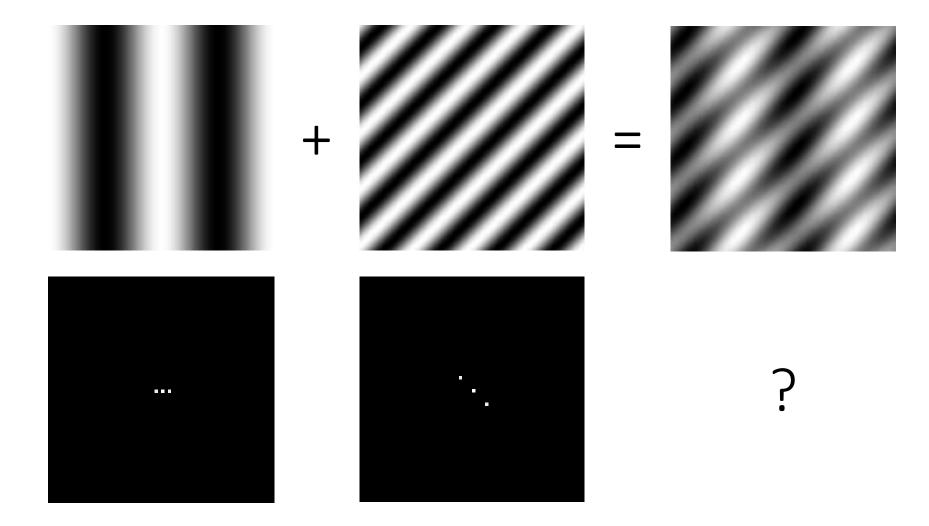


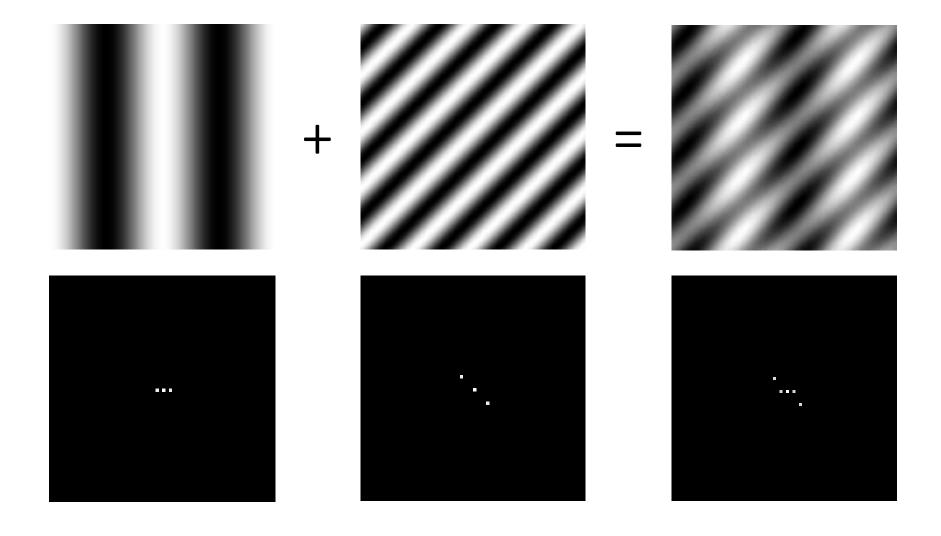
How would you generate this image with sine waves?



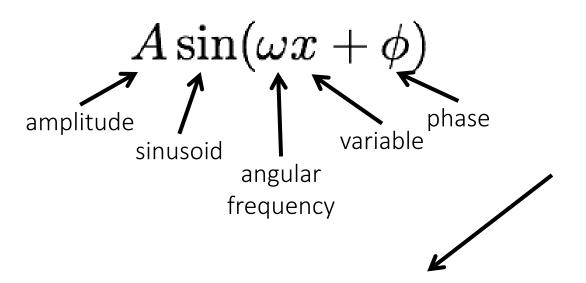
Has both an x and y components







Basic building block



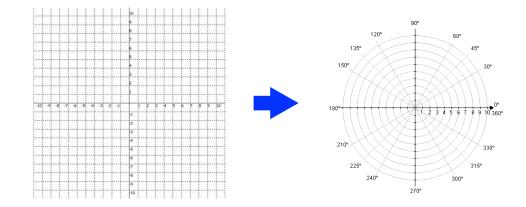
What about non-periodic signals?

Fourier's claim: Add enough of these to get any periodic signal you want!

Complex numbers have two parts:

rectangular coordinates

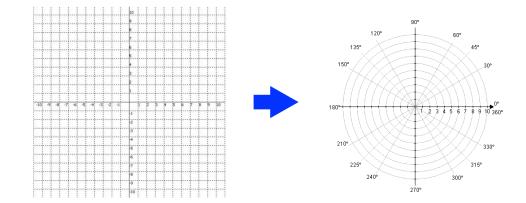
$$R+jI$$
 what's this?



Complex numbers have two parts:

rectangular coordinates

$$R+jI$$
 real imaginary



Complex numbers have two parts:

rectangular coordinates

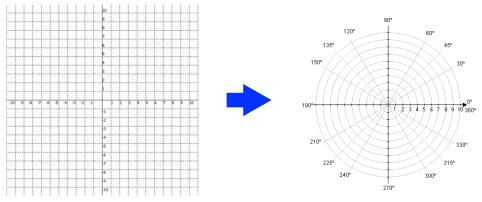
$$R+jI$$
real imaginary

Alternative reparameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

how do we compute these?



polar transform

Complex numbers have two parts:

rectangular coordinates

$$R+jI$$
real imaginary

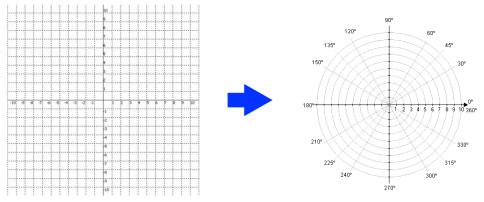
Alternative reparameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

polar transform

$$\theta = \tan^{-1}(\frac{I}{R}) \quad r = \sqrt{R^2 + I^2}$$



polar transform

Complex numbers have two parts:

rectangular coordinates

$$R+jI$$
real imaginary

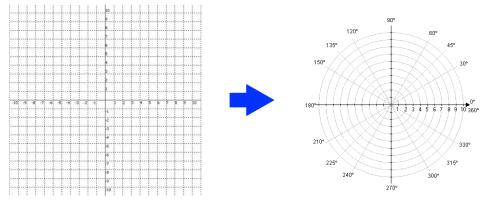
Alternative reparameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

polar transform

$$\theta = \tan^{-1}(\frac{I}{R}) \quad r = \sqrt{R^2 + I^2}$$



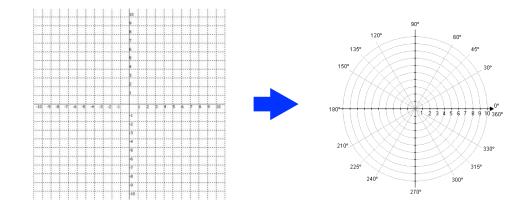
polar transform

How do you write these in exponential form?

Complex numbers have two parts:

rectangular coordinates

$$R+jI$$
 real imaginary



Alternative reparameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

polar transform

$$\theta = \tan^{-1}(\frac{I}{R}) \quad r = \sqrt{R^2 + I^2}$$

or equivalently

$$re^{j\theta}$$

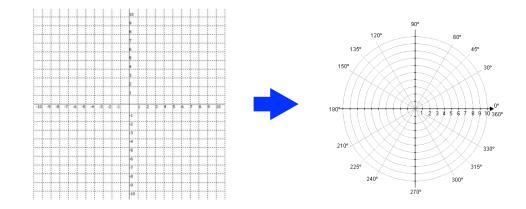
how did we get this?

exponential form

Complex numbers have two parts:

rectangular coordinates

$$R+jI$$
real imaginary



Alternative reparameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

polar transform

$$\theta = \tan^{-1}(\frac{I}{R}) \quad r = \sqrt{R^2 + I^2}$$

or equivalently

$$re^{j\theta}$$

Euler's formula

$$e^{j\theta} = \cos\theta + j\sin\theta$$

exponential form

This will help us understand the Fourier transform equations

Fourier transform

inverse Fourier transform

continuous

$$F(k) = \int_{-\infty}^{-\infty} f(x)e^{-j2\pi kx}dx$$

$$f(x) = \int_{\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

liscrete

$$F(k) = rac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N} \qquad \qquad f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N} = \sum_{x=0,1,2,\ldots,N-1}^{N-1} F(x) e^{-j2\pi kx/N}$$

Where is the connection to the 'summation of sine waves' idea?

Fourier transform

inverse Fourier transform

continuous

$$F(k) = \int_{\infty}^{-\infty} f(x)e^{-j2\pi kx}dx$$

$$f(x) = \int_{\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

liscrete

$$F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N}$$

$$f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N} \ _{x = 0, 1, 2, \ldots, N-1}$$

Where is the connection to the 'summation of sine waves' idea?

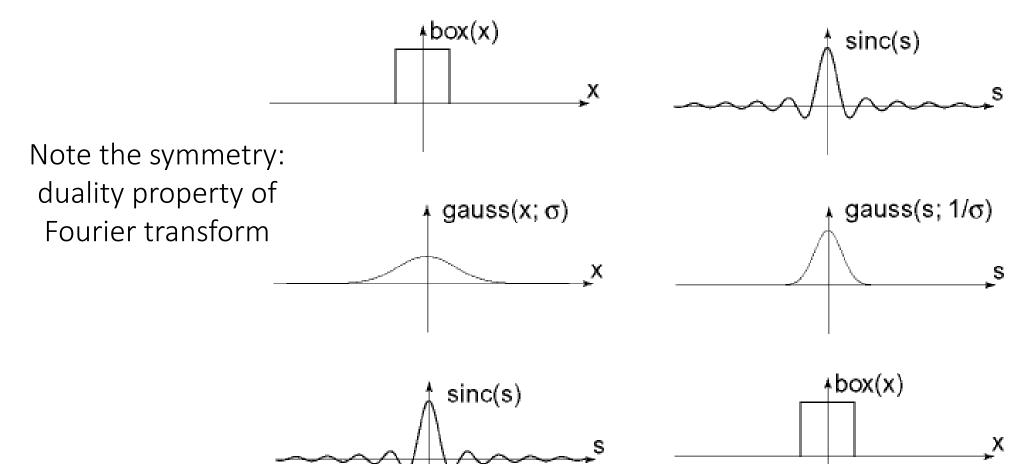
Where is the connection to the 'summation of sine waves' idea?

$$f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N}$$
 Euler's formula
$$e^{j\theta} = \cos\theta + j\sin\theta$$
 sum over frequencies
$$f(x) = \sum_{k=0}^{N-1} F(k) \bigg\{ \cos(2\pi kx) + j\sin(2\pi kx) \bigg\}$$
 scaling parameter wave components

Fourier transform pairs

spatial domain

frequency domain



Computing the discrete Fourier transform (DFT)

Computing the discrete Fourier transform (DFT)

$$F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N}$$
 is just a matrix multiplication:

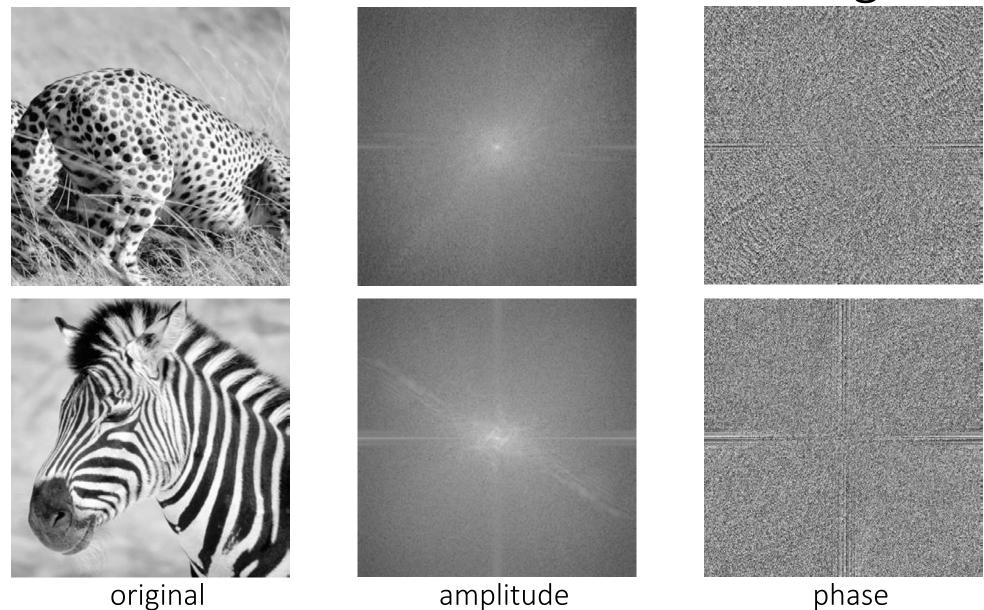
$$F = Wf$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$W = e^{-j2\pi/N}$$

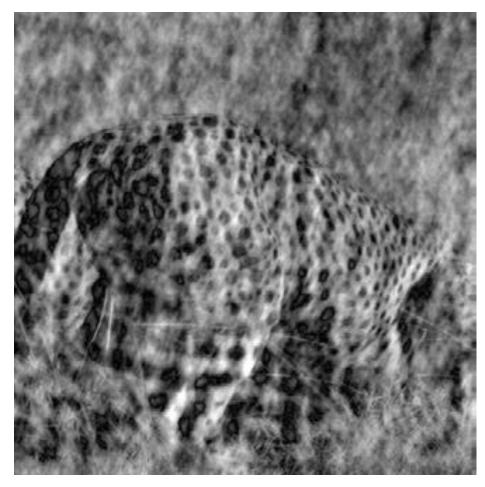
In practice this is implemented using the fast Fourier transform (FFT) algorithm.

Fourier transforms of natural images

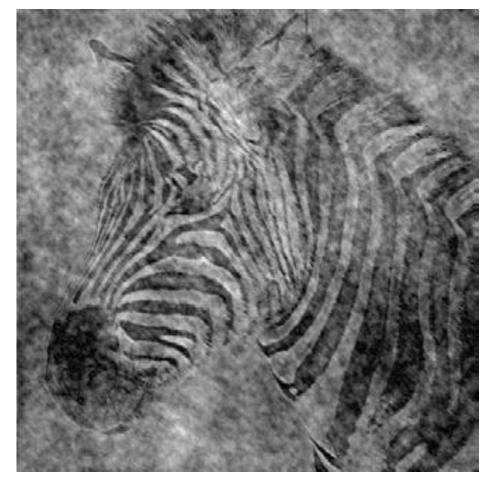


Fourier transforms of natural images

Image phase matters!



cheetah phase with zebra amplitude



zebra phase with cheetah amplitude

Frequency-domain filtering

Why do we care about all this?

The convolution theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g*h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

What do we use convolution for?

Convolution for 1D continuous signals

Definition of linear shift-invariant filtering as convolution:

$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$
 filter signal

Using the convolution theorem, we can interpret and implement all types of linear shift-invariant filtering as multiplication in frequency domain.

Why implement convolution in frequency domain?

Frequency-domain filtering in Matlab

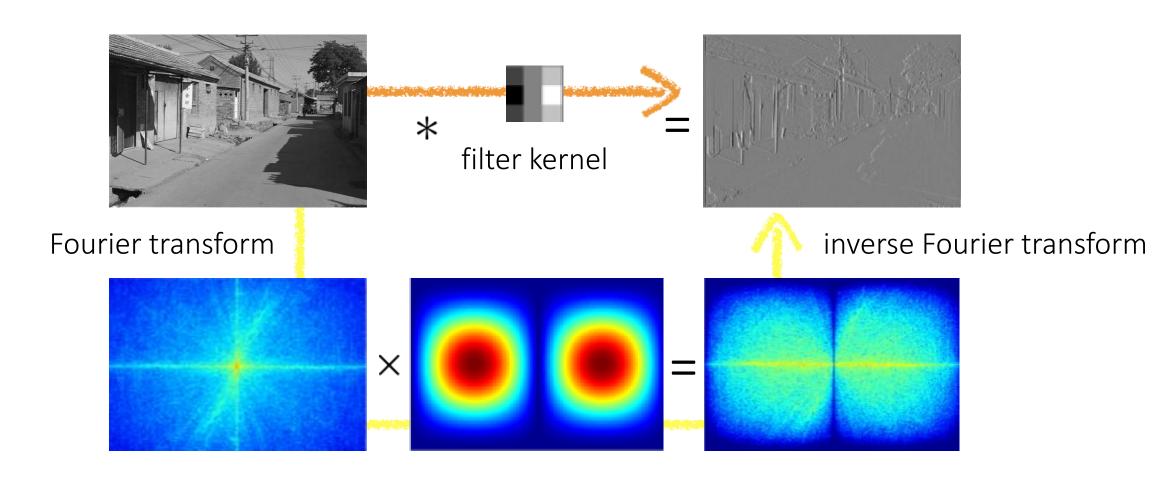
Filtering with fft:

```
im = double(imread('...'))/255;
im = rgb2gray(im); % "im" should be a gray-scale floating point image
[imh, imw] = size(im);
hs = 50; % filter half-size
fil = fspecial('gaussian', hs*2+1, 10);
fftsize = 1024; % should be order of 2 (for speed) and include padding
im fft = fft2(im, fftsize, fftsize);
                                                          % 1) fft im with
padding
fil fft = fft2(fil, fftsize, fftsize);
                                                          % 2) fft fil, pad to
same size as image
im fil fft = im fft .* fil fft;
                                                           % 3) multiply fft
images
im fil = ifft2(im fil fft);
                                                          % 4) inverse fft2
im fil = im fil(1+hs:size(im,1)+hs, 1+hs:size(im, 2)+hs); % 5) remove padding
```

Displaying with fft:

```
figure(1), imagesc(log(abs(fftshift(im_fft)))), axis image, colormap jet
```

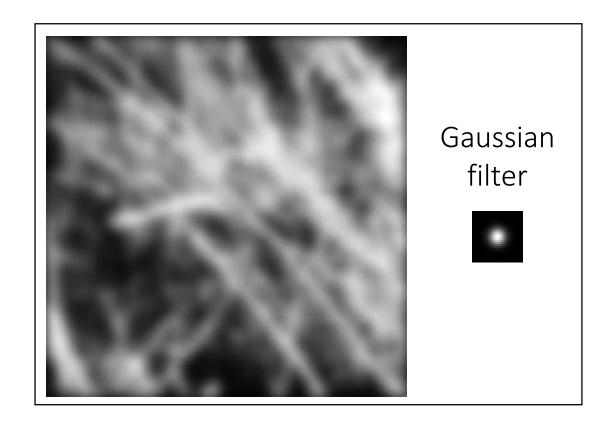
Spatial domain filtering



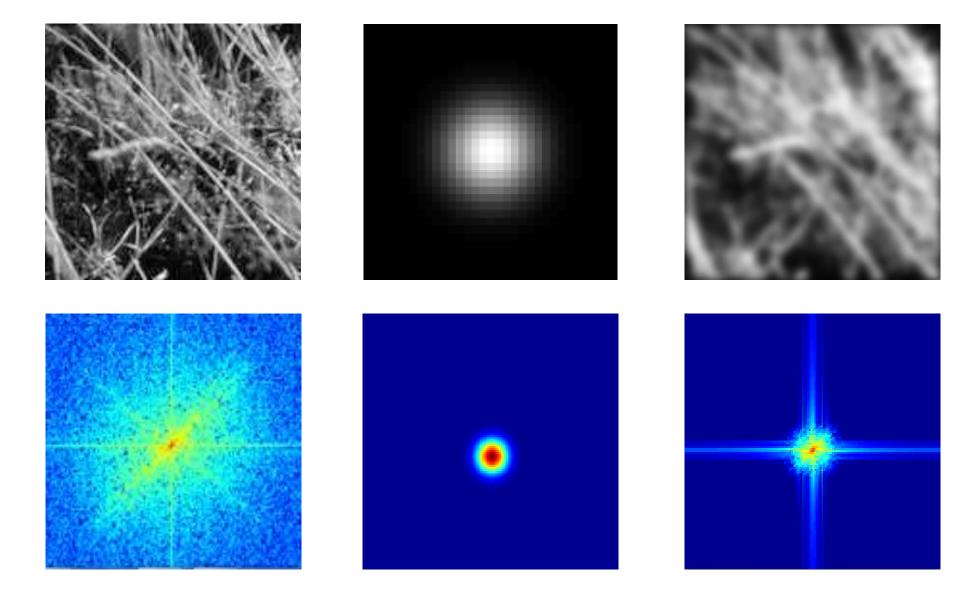
Frequency domain filtering

Revisiting blurring

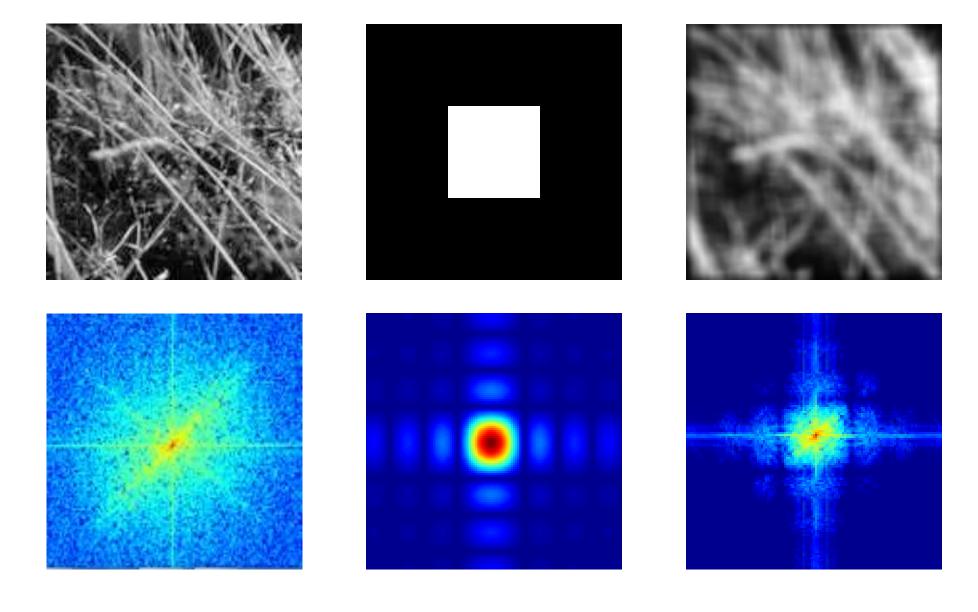
Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?



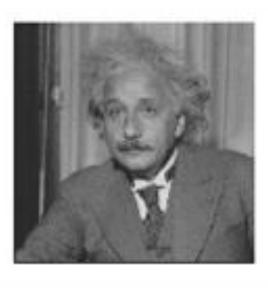
Gaussian blur



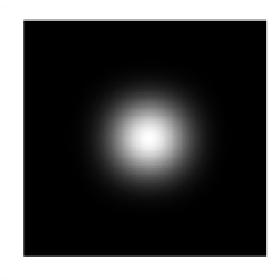
Box blur



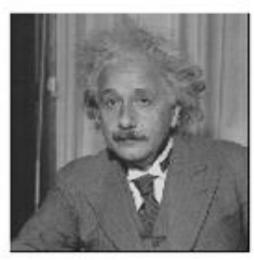
More filtering examples



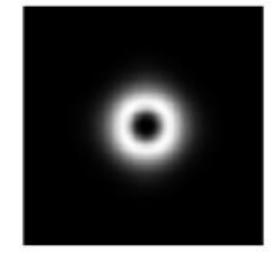
?



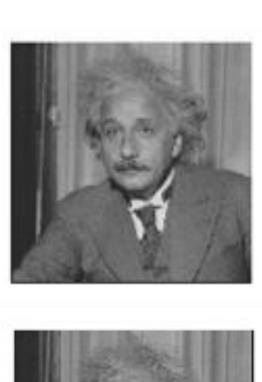
filters shown in frequency-domain

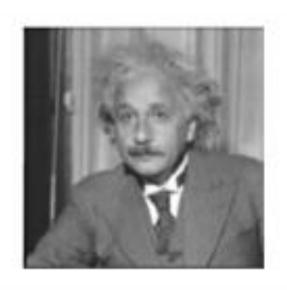


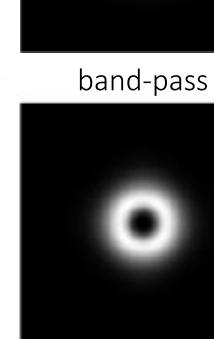
?

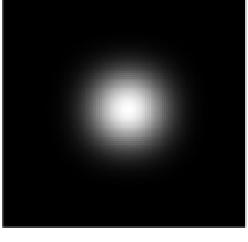


More filtering examples



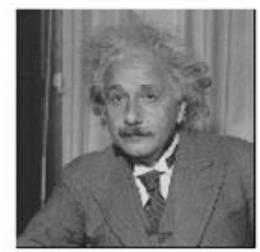






low-pass

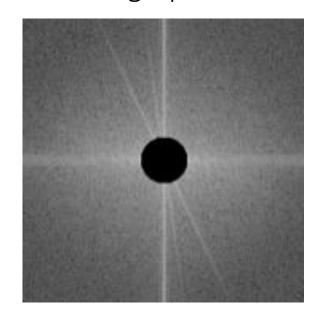
filters shown in frequency-domain



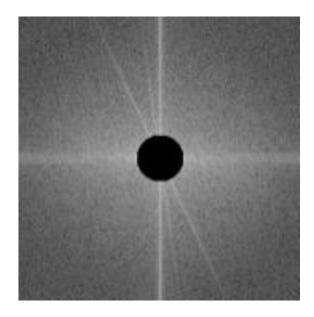
More filtering examples

 $\dot{7}$

high-pass

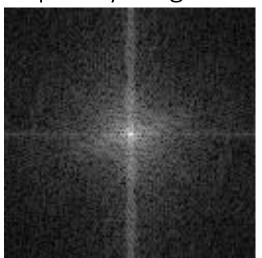


high-pass

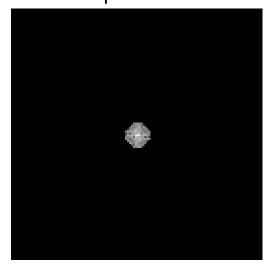


original image

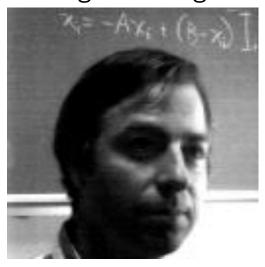
frequency magnitude



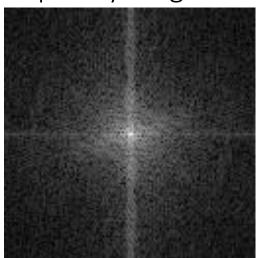
low-pass filter



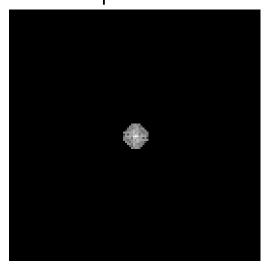
original image



frequency magnitude



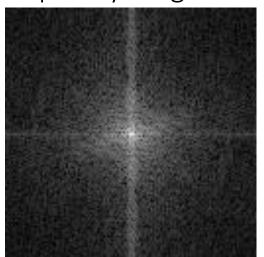
low-pass filter



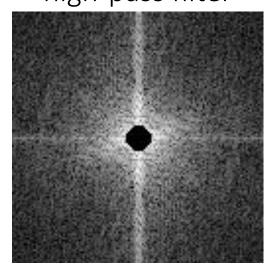


original image

frequency magnitude

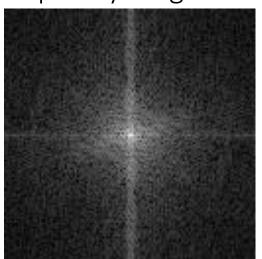


high-pass filter

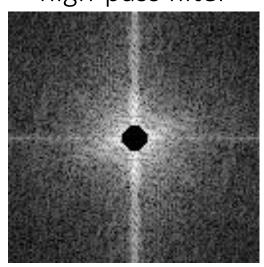


original image

frequency magnitude

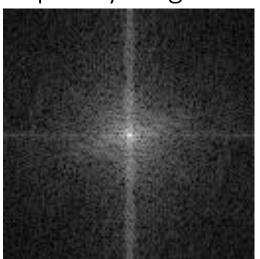


high-pass filter

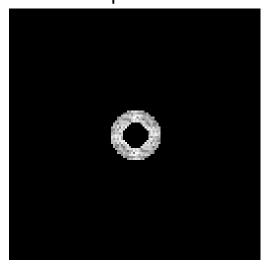


original image

frequency magnitude

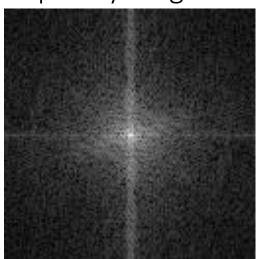


band-pass filter

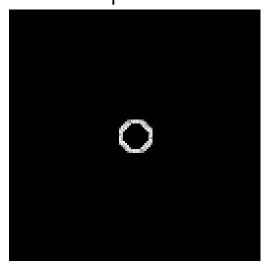


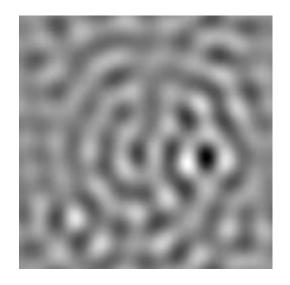
original image

frequency magnitude



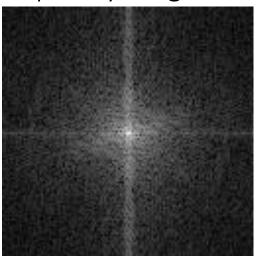
band-pass filter



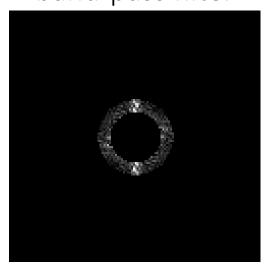


original image

frequency magnitude

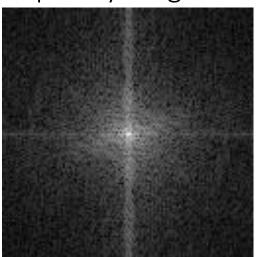


band-pass filter

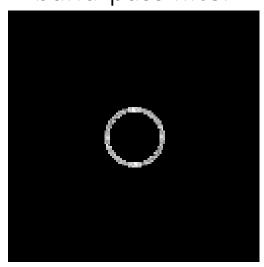


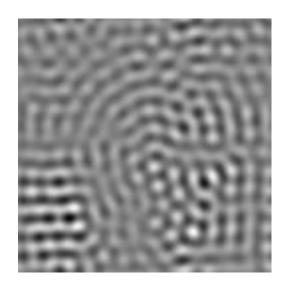
original image

frequency magnitude



band-pass filter





Revisiting sampling

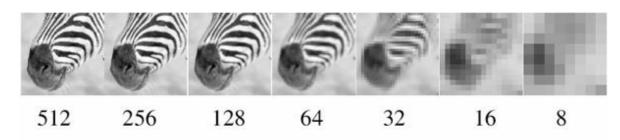
The Nyquist-Shannon sampling theorem

A continuous signal can be perfectly reconstructed from its discrete version using linear interpolation, if sampling occurred with frequency:

$$f_{s} \geq 2f_{\max}$$
 — This is called the Nyquist frequency

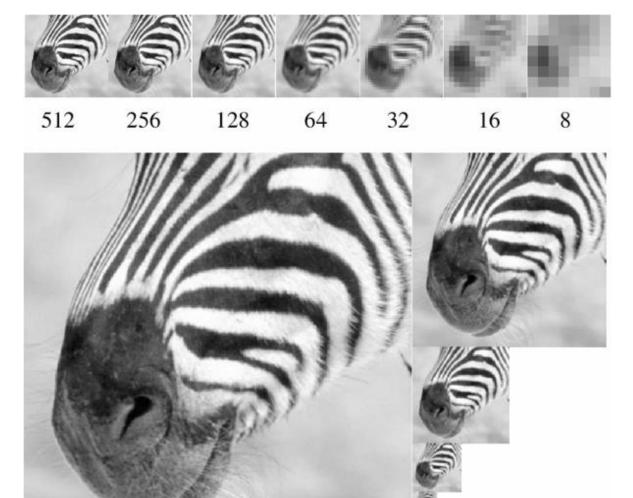
Equivalent reformulation: When downsampling, aliasing does not occur if samples are taken at the Nyquist frequency or higher.

Gaussian pyramid



How does the Nyquist-Shannon theorem relate to the Gaussian pyramid?

Gaussian pyramid



How does the Nyquist-Shannon theorem relate to the Gaussian pyramid?

- Gaussian blurring is low-pass filtering.
- By blurring we try to sufficiently decrease the Nyquist frequency to avoid aliasing.

How large should the Gauss blur we use be?

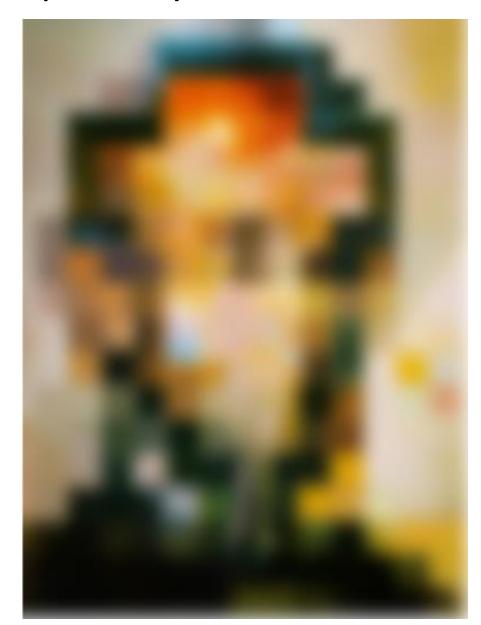
Frequency-domain filtering in human vision



Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

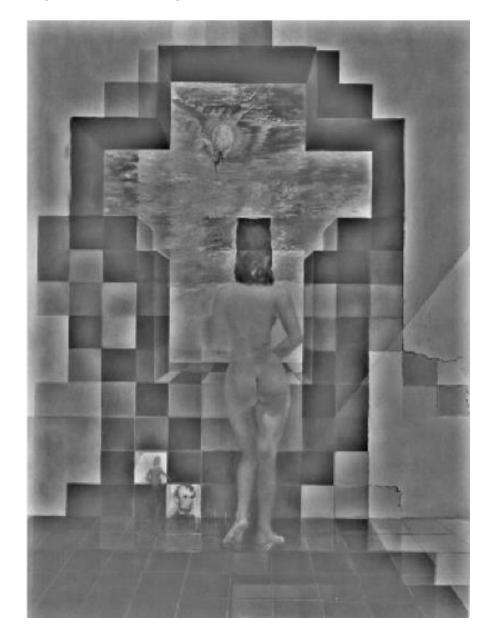
Salvador Dali, 1976

Frequency-domain filtering in human vision



Low-pass filtered version

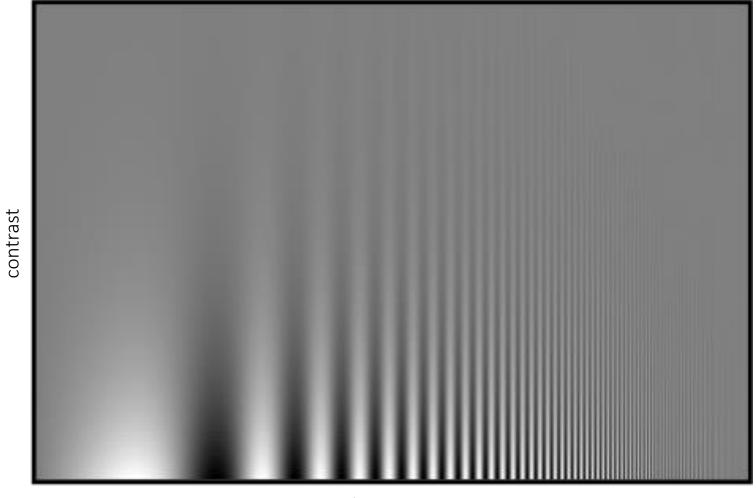
Frequency-domain filtering in human vision



High-pass filtered version

Variable frequency sensitivity

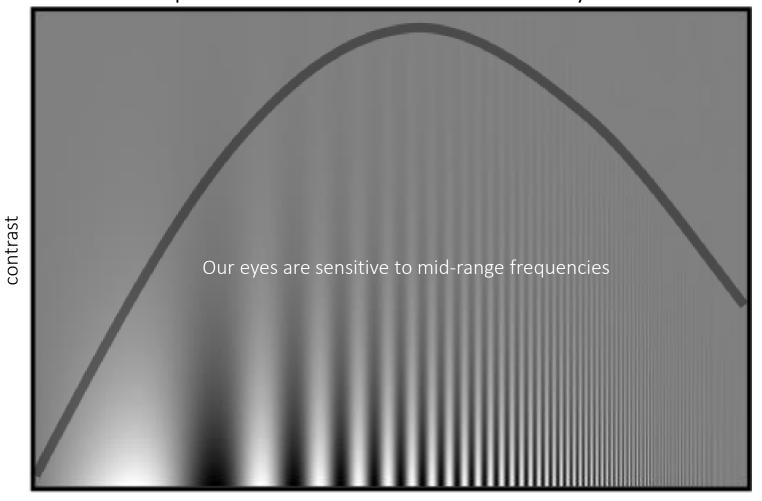
Experiment: Where do you see the stripes?



frequency

Variable frequency sensitivity

Campbell-Robson contrast sensitivity curve



- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid frequencies dominate perception

frequency

References

Basic reading:

Szeliski textbook, Sections 3.4.

Additional reading:

- Hubel and Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex," The Journal of Physiology 1962
 - a foundational paper describing information processing in the visual system, including the different types of filtering it performs; Hubel and Wiesel won the Nobel Prize in Medicine in 1981 for the discoveries described in this paper