
16-385 Computer Vision, Spring 2018

Homework Assignment 1
Image Filtering and Hough Transform

Due Date: Wed February 7, 2016 23:59

In this assignment you will be implementing some basic image processing algorithms and
putting them together to build a Hough Transform based line detector. Your code will be
able to find the start and end points of straight line segments in images. We have included
a number of images for you to test your line detector code on. Like most vision algorithms,
the Hough Transform uses a number of parameters whose optimal values are (unfortunately)
data dependent, that is, a set of parameter values that works really well on one image might
not be best for another image. By running your code on the test images you will learn about
what these parameters do and how changing their values effects performance.

Many of the algorithms you will be implementing as part of this assignment are functions
in the Matlab image processing toolbox. You are not allowed to use calls to functions in this
assignment. You may however compare your output to the output generated by the image
processing toolboxes to make sure you are on the right track.

Instructions

1. Integrity and collaboration: Students are encouraged to work in groups but each
student must submit their own work. If you work as a group, include the names of
your collaborators in your write up. Code should NOT be shared or copied. Please
DO NOT use external code unless permitted. Plagiarism is strongly prohibited and
may lead to failure of this course.

2. Start early! Especially those not familiar with Matlab.

3. Questions: If you have any questions, please look at Piazza first. Other students may
have encountered the same problem, and it may be solved already. If not, post your
question on the discussion board. Teaching staff will respond as soon as possible.

4. Write-up: Your write-up should mainly consist of three parts, your answers to theory
questions, the resulting images of each step, that is, the output of houghScript.m, and
the discussions for experiments. Please note that we DO NOT accept handwritten
scans for your write-up in this assignment. Please type your answers to theory questions
and discussions for experiments electronically.

5. Submission: Your submission for this assignment should be a zip file, <andrew-id.zip>,
composed of your write-up, your Matlab implementations (including any helper func-
tions), and your implementations, results for extra credit (optional). Please make sure

1



to remove the data/ and result/ folders, the houghScript.m and drawLine.m scripts,
and any other temporary files you generated.

Your final upload should have the files arranged in this layout:

<AndrewID>.zip

• <AndrewId>

– <AndrewId>.pdf

– matlab

∗ myImageFilter.m

∗ myEdgeFilter.m

∗ myHoughTransform.m

∗ myHoughLines.m

∗ any helper functions you need

– ec

∗ myHoughLineSegments.m

∗ ec.m

∗ your own images

∗ your own results

6. File paths: Please make sure that any file paths that you use are relative and not
absolute. Not imread(’/name/Documents/subdirectory/hw1/data/xyz.jpg’) but
imread(’../data/xyz.jpg’).

1 Theory questions

Type down your answers for the following questions in your write-up. Each
question should only take a couple of lines. In particular, the proofs” do not require any
lengthy calculations. If you are lost in many lines of complicated algebra you are doing
something much too complicated (or wrong).

Q1.1 Hough Transform Line Parametrization (20 points)

1. Show that if you use the line equation ρ = x cos θ+y sin θ, each image point (x, y)
results in a sinusoid in (ρ, θ) Hough space. Relate the amplitude and phase of the
sinusoid to the point (x, y).

2. Why do we parametrize the line in terms (ρ, θ) instead of the slope and intercept
(m, c)? Express the slope and intercept in terms of (ρ, θ).

3. Assuming that the image points (x, y) are in an image of width W and height
H, that is, x ∈ [1,W ], y ∈ [1, H], what is the maximum absolute value of ρ, and
what is the range for θ?

2



4. For point (10, 10) and points (20, 20) and (30, 30) in the image, plot the cor-
responding sinusoid waves in Hough space, and visualize how their intersection
point defines the line. What is (m, c) for this line?. Please use Matlab to plot the
curves and report the result in your write-up.

2 Implementation

We have included a main script named houghScript.m that takes care of reading in images
from a directory, making function calls to the various steps of the Hough transform (the
functions that you will be implementing) and generates images showing the output and
some of the intermediate steps. You are free to modify the script as you want, but note that
TAs will run the original houghScript.m while grading. Please make sure your code runs
correctly with the original script and generates the required output images.

Every script and function you write in this section should be included in the
matlab/ directory. Please include resulting images in your write-up.

Q2.1 Convolution (20 points)

Write a function that convolves an image with a given convolution filter
function [img1] = myImageFilter(img0, h)

As input, the function takes a greyscale image (img0) and a convolution filter stored
in matrix h. The output of the function should be an image img1 of the same size
as img0 which results from convolving img0 with h. You can assume that the filter h

is odd sized along both dimensions. You will need to handle boundary cases on the
edges of the image. For example, when you place a convolution mask on the top left
corner of the image, most of the filter mask will lie outside the image. One solution is
to output a zero value at all these locations, the better thing to do is to pad the image
such that pixels lying outside the image boundary have the same intensity value as the
nearest pixel that lies inside the image.

You can call Matlab’s function to pad array. However, your code can not call on
Matlab’s imfilter, conv2, convn, filter2 functions, or any other similar functions.
You may compare your output to these functions for comparison and debugging. This
function should be vectorized. Examples and meaning of vectorization can be found
here. Specifically, try to reduce the number of for loops that you use in the function
as much as possible.

Q2.2 Edge detection (20 points)

Write a function that finds edge intensity and orientation in an image. Display the
output of your function for one of the given images in the handout.

function [img1] = myEdgeFilter(img0, sigma)

The function will input a greyscale image (img0) and scalar (sigma). sigma is the
standard deviation of the Gaussian smoothing kernel to be used before edge detection.
The function will output img1, the edge magnitude image.

3

https://www.mathworks.com/help/matlab/matlab_prog/vectorization. html


First, use your convolution function to smooth out the image with the specified Gaus-
sian kernel. This helps reduce noise and spurious fine edges in the image. Use fspecial
to get the kernel for the Gaussian filter. The size of the Gaussian filter should depend
on sigma (e.g., hsize = 2 * ceil(3 * sigma) + 1).

The edge magnitude image img1 can be calculated from image gradients in the x
direction and y direction. To find the image gradient imgx in the x direction, convolve
the smoothed image with the x-oriented Sobel filter. Similarly, find image gradient
imgy in the y direction by convolving the smoothed image with the y-oriented Sobel
filter. You can also output imgx and imgy if needed.

In many cases, the high gradient magnitude region along an edge will be quite thick.
For finding lines its best to have edges that are a single pixel wide. Towards this end,
make your edge filter implement non-maximum suppression, that is for each pixel look
at the two neighboring pixels along the gradient direction and if either of those pixels
has a larger gradient magnitude then set the edge magnitude at the center pixel to
zero. Map the gradient angle to the closest of 4 cases, where the line is sloped at almost
0◦, 45◦, 90◦, and 135◦. For example, 30◦ would map to 45◦.

For more details about non-maximum suppression, please refer to the last page of this
handout.

Your code cannot call on Matlab’s edge function, or any other similar functions. You
may use edge for comparison and debugging. A sample result is shown in Figure 1.

Figure 1: Edge detection result.

Q2.3 The Hough transform (20 points)

Write a function that applies the Hough Transform to an edge magnitude image. Dis-
play the output for one of the images in the write-up.

function [H, rhoScale, thetaScale] = myHoughTransform(Im, threshold,

rhoRes,thetaRes)

Im is the edge magnitude image, threshold (scalar) is a edge strength threshold used to
ignore pixels with a low edge filter response. rhoRes (scalar) and thetaRes (scalar) are

4



the resolution of the Hough transform accumulator along the ρ and θ axes respectively.
H is the Hough transform accumulator that contains the number of “votes” for all the
possible lines passing through the image. rhoScale and thetaScale are the arrays of
ρ and θ values over which myHoughTransform generates the Hough transform matrix
H. For example, if rhoScale(i) = ρi and thetaScale(j) = θi, then H(i,j) contains
the votes for ρ = ρi and θ = θi.

First, threshold the edge image. Each pixel (x, y) above the threshold is a possible
point on a line and votes in the Hough transform for all the lines it could be a part
of. Parametrize lines in terms of θ and ρ such that ρ = x cos θ + y sin θ, θ ∈ [0, 2π]
and ρ ∈ [0,M ]. M should be large enough to accommodate all lines that could lie
in an image. Each line in the image corresponds to a unique pair (ρ, θ) in this range.
Therefore, θ values corresponding to negative ρ values are invalid, and you should not
count those votes.

The accumulator resolution needs to be selected carefully. If the resolution is set too
low, the estimated line parameters might be inaccurate. If resolution is too high, run
time will increase and votes for one line might get split into multiple cells in the array.

Your code cannot call Matlab’s hough function, or any other similar functions. You
may use hough for comparison and debugging. A sample visualization of H is shown
in Figure 2.

Figure 2: Hough transform result.

Q2.4 Finding lines (15 points)

Write a function that uses the Hough transform output to detect lines,
function [rhos, thetas] = myHoughLines(H, nLines)

5



where H is the Hough transform accumulator, and nLines is the number of lines to
return. Outputs rhos and thetas are both nLines×1 vectors that contain the row
and column coordinates of peaks in H, that is, the lines found in the image.

Ideally, you would want this function to return the ρ and θ coordinates for the nLines

highest scoring cells in the Hough accumulator. But for every cell in the accumulator
corresponding to a real line (likely to be a locally maximal value), there will probably be
a number of cells in the neighborhood that also scored high but should not be selected.
These non maximal neighbors can be removed using non maximal suppression. Note
that this non maximal suppression step is different from the one performed earlier.
Here you will consider all neighbors of a pixel, not just the pixels lying along the
gradient direction. You can either implement your own non maximal suppression code
or find a suitable function on the Internet (you must acknowledge and cite the source
in your write- up, as well as hand in the source in your matlab/ directory). Another
option is to use Matlab function imdilate.

Once you have suppressed the non maximal cells in the Hough accumulator, return the
coordinates corresponding to the strongest peaks in the accumulator.

Your code can not call on Matlab’s houghpeaks function or other similar functions.
You may use houghpeaks for comparison and debugging.

Q2.5 Fitting line segments for visualization (5 points)

Now you have the parameters ρ and θ for each line in an image. However, this is not
enough for visualization. We still need to prune the detected lines into line segments
that do not extend beyond the objects they belong to. This is done by houghlines

and drawLines.m. See the script houghScript.m for more details. You can modify the
parameters of houghlines and see how the visualizations change. As shown in Figure 3,
the result is not perfect, so do not worry if the performance of your implementation is
not good. You can still get full credit as long as your implementation makes sense.

Figure 3: Line segment result.

Q2.5x Implement houghlines yourself (extra: 10 points)

6



In Q2.5, we used the Matlab built-in function houghlines to prune the detected lines
into line segments that do not extend beyond the objects they belong to. Now, it’s our
turn to implement one ourselves! Please write a function named myHoughLineSegments

and then compare your results with the Matlab built-in function in your write-up. Show
at least one image for each and briefly describe the differences.

function [lines] = myHoughLineSegments(lineRho, lineTheta, Im)

Your function should output lines as a Matlab array of structures containing the
pixel locations of the start and end points of each line segment in the image. The start
location of the ith line segment should be stored as a 2 × 1 vector lines(i).start

and the end location as a 2 × 1 vector in lines(i).stop. Remember to save your
implementation in the ec/ directory.

Your code can not call on Matlab’s houghlines function, or any other similar functions.
You may use houghlines for comparison and debugging.

3 Experiments

Q3.1 (15 points)

Use the script included to run your Hough detector on the image set and generate
intermediate output images. Include the set of intermediate outputs for one image in
your write-up. Did your code work well on all the image with a single set of parameters?
How did the optimal set of parameters vary with images? Which step of the algorithm
causes the most problems? Did you find any changes you could make to your code
or algorithm that improved performance? In your write-up, you should describe how
well your code worked on different images, what effect do the parameters have and any
improvements you made to your code to make it work better.

4 Try your own images!

Q4.1x Implement houghlines yourself (extra: 10 points)

Take five pictures, either with a camera of your own, or from the Internet. Write a script
ec.m to take care of reading in your images (use a relative path here, not absolute),
making function calls to the various steps of the Hough transform, and generating
images showing the output and some of the intermediate steps (like houghScript.m).
Submit your own images and ec.m in ec/. Please include resulting images in your
write-up.

5 Non-maximum suppression

Non-maximum suppression (NMS) is an algorithm used to find local maxima using the
property that the value of a local maximum is greater than its neighbors. To implement the

7



NMS in 2D image, you can move a 3×3 (or 7×7, etc.) filter over the image. At every pixel,
the filter suppresses the value of the center pixel (by setting its value to 0) if its value is not
greater than the value of the neighbors. To use NMS for edge thinning, you should compare
the gradient magnitude of the center pixel with the neighbors along the gradient direction
instead of all the neighbors. To simplify the implementation, you can quantize the gradient
direction into 8 groups and compare the center pixel with two of the 8 neighbors in the 3×3
window, according to the gradient direction. For example, if the gradient angle of a pixel is
30◦, we compare its gradient magnitude with the north-east and south-west neighbors and
suppress its magnitude if it’s not greater than these two neighbors.

8


