Perceptron Algorithm

16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

1950s Age of the Perceptron

1957 The Perceptron (Rosenblatt)
1969 Perceptrons (Minsky, Papert)

1980s Age of the Neural Network

1986 Back propagation (Hinton)

1990s Age of the Graphical Model
2000s Age of the Support Vector Machine

2010s Age of the Deep Network

deep learning = known algorithms + computing power + big data

Learning representations
by back-propagating errors

David E, Rumelhart*, Geoffrey E. Hinton*
& Ronald J. Williams*

* Institute for Cognitive Science, C.015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal *hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units, The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-comvergence procedure’.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for
a particular task domain. The task is specified by giving the
desired state vector of the output units for each state vector of
the input units, If the input units are directly connected to the
output units it is relatively easy to find learning rules that
iteratively adjust the relative strengths of the connections so as
to progressively reduce the difference between the actual and
desired output vectors®, Learning becomes more interesting but

t To whom correspondence should be addressed.

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,
¥i, of the units that are connected to j and of the weights, wj,
on these connections

x;zzyc“’,; (l)

Units can be given biases by introducing an extra input to each
unit which always has a value of 1. The weight on this extra
input is called the bias and is equivalent to a threshold of the
opposite sign. It can be treated just like the other weights.
A unit has a real-valued output, y;,, which is a non-linear
function of its total input
1

T l4e ™

¥j (2)

©1886 Nature Publishing Group

The Perceptron

weights

sign function
(Heaviside step function)

@— Y output

inputs

1: function PERCEPTRON ALGORITHM
2: w0 «— 0

3: fort=1,...,7T do

4: RECEIVE (Zl’,‘(t)) x € {0,1}"Y N-dbinary vector

5: 1(4) == Slgn (<w(t1) : ,’Ij(t) >> perceptron is just one line of code!
sign of zero is +1

6: RECEIVE(y") ye{1,-1)

7: wf,(f) = wf,(f by Yy - (t) 1[y(®) £)]

RECEIVE(z(")

?;X) — Sign(<w(t—1)7 w(t)>)
RECEIVE(y?!)

wif =wld Y 4y 2l 1y® £ O]

initialized to O

ﬂ RECEIVE(z®) '
- A
50 = sign(<w<t—1>,w<t>>>

RECEIVE(y")

wif =wld Y 4y 2l 1y® £ O]

e observation (1,-1)

RECEIVE(z®)

A
<w(t_1)7 w(t)>
G
RECEIVE(y")
wit) = w4y 21y ® £)
< ® -

e observation (1,-1)

QS) — Sign((w(t_l)’ m(t)>>
= -1

RECEIVE(z®)

A
@X) — sjgn <w(t_1)7w(t)>>
[RECEIVE(y!)
wit) = w4y 21y ® £)
< ®

e observation (1,-1)
label -1

RECEIVE(z®)

gféf) — Sign (<w(t_1)7 w(t)>>

RECEIVE(y")

() _ (t—1

L W = Wn

Dy - 1y # 5]

update w

w%t) — w,’(?/t_l) _|_ yt . x*?(f) .]_[y(t) # :&(t)]

e observation (1,-1)
label -1

RECEIVE(z®)

gféf) — Sign (<w(t—1)7 w(t)>)

RECEIVE(y")

() (t—

{ w’n, — wn

Vb - 1y # 5]

update w

no match!
w%t) p— w,’(?/t_l) _|_ yt . x*?(,f) .]_[y(t) # :&(t)]
-1,1) (0,0) -1 (1,-1) 1

<

e observation (1,-1)
label -1

RECEIVE(z(")

?;X) — Sign(<w(t—1)7 w(t)>)
RECEIVE(y?!)

9 =08 4D 140 510
(_1 v1)

RECEIVE(z(®)
observation (-1,1)

RECEIVE(z(")

?;X) — Sign (<w(t—1)7 w(t)>)

RECEIVE(y?!)
wit) = w4y 21y ® £)
(_d| v1)

observation (-1,1)

RECEIVE(z(")

7t = sign ((w(t_l), w(t)>)

RECEIVE(y?!)

() (t—1

Wn @ =— Wn

(-1,1)

)+yt

1fy® £ gO]

observation (-1,1)
label +1

RECEIVE(z®)

A
() — g (t=1) p(®)
Ya Slgn(<w y L >) update W
match!
RECEIVE(y?!) [1 .
0 wi) = wi T a1y £ §O)
t t—1 t ~
n” = w4y -y - 1y # 5 (-1,1) (1,1 o+ (-11) 0
observation (-1,1)
label +1 o
update w
< >

| Receive(z®) §

:&X) — sjgn (<w(t_1)7 w(t)>>

RECEIVE(y")

wif =wld Y 4y 2l 1y® £ O]

RECEIVE(z®)

§o — sign((w(t_l),w(t)>>

RECEIVE(y")

RECEIVE(z®)

§o — sign((w(t_l),w(t)>>

RECEIVE(y")

update w

. ReCEVE(z™) §

:&X) — sjgn (<w(t_1)7 w(t)>>

RECEIVE(y")

wif =wld Y 4y 2l 1y® £ O]

RECEIVE(z®)

§o — sign((w(t_l),w(t)>>

RECEIVE(y")

RECEIVE(z®)

A
50 = sign((w(t_l),w(t)>>
RECEIVE(y")
o o
< >
O
o
v

repeat ...

The Perceptron

weights

sign function
(e.qg., step,sigmoid, Tanh, RelLU)

@— Y output

inputs

Another way to draw it...

weights - Z -
W1 (1) Combine the sum Z,
and activation function
y = f(a)
w2
nputs @ = > a f Y output
WN

Activation Function
(e.g., Sigmoid function of weighted sum)

(2) suppress the bias
term (less clutter) 4N = 1

UJN:b

Programming the 'forward pass'

Activation function (sigmoid, logistic function)

float f£(float a)

{
return 1.0 / (1.0+ exp(-a));

@ w3 > f Y output

Perceptron function (iogistic regression)

float perceptron (vector<float> x, vector<float> w)

{
float a = dot(x,w);
return f (a);

