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typical perception pipeline
representation

output

classifier

• Nearest Neighbor classifier 
• Naive Bayes classifier 
• Support Vector Machine
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Distribution of data from two classes
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Which class does q belong too?

Distribution of data from two classes
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Distribution of data from two classes

Look at the neighbors



K-nearest neighbor



K-Nearest Neighbor (KNN) Classifier

Non-parametric pattern 
classification approach 
Consider a two class problem 
where each sample consists of two 
measurements (x,y).

k = 1

k = 3

For a given query point q, 
assign the class of the 
nearest neighbor

Compute the k nearest 
neighbors and assign the 
class by majority vote.



Nearest Neighbor is competitive

MNIST Digit Recognition
– Handwritten digits 
– 28x28 pixel images: d = 784 
– 60,000 training samples 
– 10,000 test samples

Test Error Rate (%)
Linear classifier (1-layer NN) 12.0
K-nearest-neighbors, Euclidean 5.0
K-nearest-neighbors, Euclidean, deskewed 2.4
K-NN, Tangent Distance, 16x16 1.1
K-NN, shape context matching 0.67
1000 RBF + linear classifier 3.6
SVM deg 4 polynomial 1.1
2-layer NN, 300 hidden units 4.7
2-layer NN, 300 HU, [deskewing] 1.6
LeNet-5, [distortions] 0.8
Boosted LeNet-4, [distortions] 0.7Yann LeCunn



Pros

• simple yet effective 

Cons

• search is expensive (can be sped-up) 

• storage requirements 

• difficulties with high-dimensional data



What is the best distance metric between data points?

• Typically Euclidean distance 

• Locality sensitive distance metrics 

• Important to normalize.  
Dimensions have different scales 

How many K?

• Typically k=1 is good 

• Cross-validation



Distance metrics
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Distribution of data from two classes
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Which class does q belong too?

Distribution of data from two classes



q

Distribution of data from two classes

• Learn parametric model for each class 
• Compute probability of query



Naive Bayes



This is called the posterior:  
the probability of a class z given the observed features X

For classification, z is a 
discrete random variable 

(e.g., car, person, building)

X is a set of observed feature  
(e.g., features from a single image)

(it’s a function that returns a single probability value)

p(z|X)



p(z|x1, . . . ,xN )

Each x is an observed feature  
(e.g., visual words)

(it’s a function that returns a single probability value)

This is called the posterior:  
the probability of a class z given the observed features X

For classification, z is a 
discrete random variable 

(e.g., car, person, building)



p(z|x1, . . . ,xN ) =
p(x1, . . . ,xN |z)p(z)

p(x1, . . . ,xN )

posterior

likelihood prior

The posterior can be decomposed according to 
Bayes’ Rule

p(A|B) =
p(B|A)p(A)

p(B)

In our context…

Recall:



ẑ = argmax

z2z
p(z|X)

The naive Bayes’ classifier is solving this optimization

MAP (maximum a posteriori) estimate

ẑ = argmax

z2z

p(X|z)p(z)
p(X)

ẑ = argmax

z2z
p(X|z)p(z)

Bayes’ Rule

Remove constants



p(z|x1, . . . ,xN ) =
p(x1, . . . ,xN |z)p(z)

p(x1, . . . ,xN )

ẑ = argmax

z2z
p(z|X)

To optimize this…

We need to compute this

Compute the likelihood…



p(x1, . . . ,xN |z) = p(x1|z)p(x2, . . . ,xN |z)
= p(x1|z)p(x2|z)p(x3, . . . ,xN |z)
= p(x1|z)p(x2|z) · · · p(xN |z)

A naive Bayes’ classifier assumes all features are  
conditionally independent

Recall:
X YX ^ Y

p(x, y) = p(x)p(y)p(x, y) = p(x|y)p(y)

X Y
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(random variable)
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(random variable)

edge 
(dependence relation)

Graphical model visualization
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ẑ = argmax

z2z
p(z)

Y

n

p(xn|z)

To compute the MAP estimate

Given (1) a set of known parameters

p(z) p(x|z)

Compute which z has the largest probability

{x1, x2, . . . , xN}
(2) observations



count 1 6 2 1 0 0 0 1

word Tartan robot CHIMP CMU bio soft ankle sensor

p(x|z) 0.09 0.55 0.18 0.09 0.0 0.0 0.0 0.09

* typically add pseudo-counts (0.001) 
** this is an example for computing the likelihood, need to multiply times prior to get posterior

p(X|z) =
Y

v

p(xv|z)c(wv)

= (0.09)1(0.55)6 · · · (0.09)1

Numbers get really small so use log probabilities

log p(X|z = ‘grandchallenge’) = �2.42� 3.68� 3.43� 2.42� 0.07� 0.07� 0.07� 2.42 = �14.58

log p(X|z = ‘softrobot’) = �7.63� 9.37� 15.18� 2.97� 0.02� 0.01� 0.02� 2.27 = �37.48



count 1 6 2 1 0 0 0 1

word Tartan robot CHIMP CMU bio soft ankle sensor

p(x|z) 0.09 0.55 0.18 0.09 0.0 0.0 0.0 0.09

count 0 4 0 1 4 5 3 2

word Tartan robot CHIMP CMU bio soft ankle sensor

p(x|z) 0.0 0.21 0.0 0.05 0.21 0.26 0.16 0.11http://www.fodey.com/generators/newspaper/snippet.asp

log p(X|z=grand challenge) = - 14.58 
log p(X|z=bio inspired) = - 37.48

log p(X|z=grand challenge) = - 94.06 
log p(X|z=bio inspired) = - 32.41

* typically add pseudo-counts (0.001) 
** this is an example for computing the likelihood, need to multiply times prior to get posterior
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Nearest Neighbor

Naive Bayes

Support Vector Machine



Distribution of data from two classes
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Which class does q belong too?

Distribution of data from two classes



q

Distribution of data from two classes

Learn the decision boundary



Support Vector Machine



First we need to understand hyperplanes…
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w · x+ b = 0

w1x1 + w2x2 + b = 0

x1

x2

w ·
x+

b =
0

Hyperplanes (lines) in 2D

w · x = 0

a line can be written as 
dot product plus a bias

another version, add a weight 1 
and push the bias inside

w 2 R2

w 2 R3
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Hyperplanes (lines) in 2D

w · x = 0(offset/bias outside) (offset/bias inside)
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w · x+ b = 0

w1x1 + w2x2 + b = 0

x1

x2

�(w1x1 + w2x2 + b) = 0

w1x1 + w2x2 + b = 0

define the same line

The line

and the line

Important property:
Free to choose any normalization of w

w ·
x+

b =
0

Hyperplanes (lines) in 2D

w · x = 0(offset/bias outside) (offset/bias inside)
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w · x+ b = 0

What is the distance 
to origin?

(hint: use normal form)
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x1

x2

b

kwk

w · x+ b = 0

x cos ✓ + y sin ✓ = ⇢

you get the normal form

distance to origin

1

kwkscale
w · x+ b = 0 by
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x2

w · x+ b = 0

What is the distance 
between two parallel lines?
(hint: use distance to origin)

w · x+ b = �1
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distance 
between two 
parallel lines

1

kwk

Difference of distance to origin 

b+ 1

kwk � b

kwk =
1

kwk

w · x+ b = �1



w

w · x+ b = 0

What happens if you change b?

b

kwk

Hyperplanes (planes) in 3D
Now we can go to 3D …

what are the dimensions of 
this vector?



w

Hyperplanes (planes) in 3D

w · x+ b = �1

b+ 1

kwk



w
What’s the distance 

between these 
parallel planes?

Hyperplanes (planes) in 3D

w · x+ b = 0

w · x+ b = 1

w · x+ b = �1



w

Hyperplanes (planes) in 3D

2

kwk

w · x+ b = 0

w · x+ b = 1

w · x+ b = �1



Support Vector Machine



What’s the best w?



What’s the best w?



What’s the best w?



What’s the best w?



What’s the best w?



What’s the best w?

Intuitively, the line that is the 
farthest from all interior points



What’s the best w?

Maximum Margin solution:  
most stable to perturbations of data



What’s the best w?

Want a hyperplane that is far away from ‘inner points’

support vectors



Find hyperplane w such that … 

the gap between parallel hyperplanes
2

kwk

margin

is maximized

w · x+ b = 1

w · x+ b = �1

w · x+ b = 0



max

w
2

kwk

subject to w · xi + b
� +1 if yi = +1

 �1 if yi = �1

for i = 1, . . . , N

Can be formulated as a maximization problem

label of the data point

Why is it +1 and -1?

What does this constraint mean?



max

w
2

kwk

subject to w · xi + b
� +1 if yi = +1

 �1 if yi = �1

for i = 1, . . . , N

min
w

kwk

Can be formulated as a maximization problem

Equivalently,

subject to yi(w · xi + b) � 1 for i = 1, . . . , N

Where did the 2 go?

What happened to the labels?



min
w

kwk

Objective Function

Constraints

‘Primal formulation’ of a linear SVM

This is a convex quadratic programming (QP) problem
(a unique solution exists)

subject to yi(w · xi + b) � 1 for i = 1, . . . , N



‘soft’ margin



What’s the best w?



What’s the best w?

Very narrow margin 



Separating cats and dogs

Very narrow margin 



What’s the best w?

Very narrow margin 

Intuitively, we should allow for some misclassification if 
we can get more robust classification 



What’s the best w?

Trade-off between the MARGIN and the MISTAKES 
(might be a better solution) 



Adding slack variables

misclassified 
point

⇠i
kwk >

2

kwk

⇠i � 0



‘soft’ margin

min
w,⇠

kwk2 + C
X

i

⇠i

objective

i = 1, . . . , N

yi(w
>
xi + b) � 1� ⇠i

subject to

for



‘soft’ margin

min
w,⇠

kwk2 + C
X

i

⇠i

objective

i = 1, . . . , N

yi(w
>
xi + b) � 1� ⇠i

subject to

for

The slack variable allows for mistakes,  
as long as the inverse margin is minimized.



‘soft’ margin

i = 1, . . . , N

yi(w
>
xi + b) � 1� ⇠imin

w,⇠
kwk2 + C

X

i

⇠i

subject to

for

objective

• Every constraint can be satisfied if slack is large 
• C is a regularization parameter 

• Small C: ignore constraints (larger margin) 
• Big C:  constraints (small margin) 

• Still QP problem (unique solution)






