

Feature Descriptors

16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

Tiny Images

Just downsample it

Simple Fast Robust to small affine transformation

What are the problems?

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (what's the purpose of this step?)

(what's the purpose of this step?)

Haar Wavelet Transform

(what's the purpose of this step?)

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard deviation

(what's the purpose of this step?)

Haar Wavelet Transform

(what's the purpose of this step?)

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard deviation (removes bias and gain)

Haar Wavelet Transform (what's the purpose of this step?)

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard deviation (removes bias and gain)

Haar Wavelet Transform (low frequency projection)

Haar Wavelets

(actually, Haar-like features)

Use responses of a bank of filters as a descriptor

Haar wavelet responses can be computed with filtering

Haar wavelet responses can be computed **efficiently** (in constant time) with integral images

Integral Image

original image

I(x, y)			
1	5	2	
2	4	1	
2	1	1	

1	6	8
3	12	15
5	15	19

integral image

$$A(x,y) = \sum_{x' \le x, y' \le y} I(x',y')$$

Integral Image

$$A(x, y)$$

1 6 8 integral image

5 15 19

$$A(x,y) = \sum_{x' < x,y' < y} I(x',y')$$

Can find the **sum** of any block using **3** operations

$$A(x_1, y_1, x_2, y_2) = A(x_2, y_2) - A(x_1, y_2) - A(x_2, y_1) + A(x_1, y_1)$$

What is the sum of the bottom right 2x2 square?

$$A(x_1, y_1, x_2, y_2) = A(x_2, y_2) - A(x_1, y_2) - A(x_2, y_1) + A(x_1, y_1)$$

$$A(1, 1, 3, 3) = A(3, 3) - A(1, 3) - A(3, 1) + A(1, 1)$$

= 19 - 8 - 5 + 1
= 7

Given an image patch, compute filter responses

filter bank (20 Haar wavelet filters)

Responses are usually computed at specified location as a face patch descriptor

Given an image patch, compute filter responses

filter bank (20 Haar wavelet filters)

Responses are usually computed at specified location as a face patch descriptor

When will this feature descriptor fail?

LOOKS

STYLE TIPS

RELATED PROJECTS

COLLABORATIONS

PRESS

REFERENCES

CONTACT

IMAGES

For image requests, please contact me at <u>UNDISCL</u>

OSED and be sure to specify which image and the pixel-dimension needed.

SUPPORT

Support this project by shopping at the <u>Privacy Gift</u> <u>Shop</u>

All content © Adam Harvey / @adamhrv

CC+: All images are: Attribution-NonCommercial-ShareAlike + Strictly No Ad-Trackers

Face

Once computer vision programs detect a face, they can extract data about your emotions, age, and identity.

See how a face is detected

Camouflage from face detection.

CV Dazzle explores how fashion can be used as camouflage from face-detection technology, the first step in automated face recognition.

From all appearances, deception has always been critical to daily survival—for human and non-human creatures alike—and,

