

16-385 Computer Vision

Filters we have learned so far ...

The 'Box' filter

$\frac{1}{9}$	I	I	I
	I	I	I
	I	I	I

Gaussian filter

Sobel filter

I	0	-1
2	0	-2
I	0	-1

Laplace filter

0	I	0
_	-4	_
0	1 0	

filtering $h = g \otimes f$ (cross-correlation)

$$h = g \otimes f$$

output filter image
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 What's the difference?

convolution $h = g \star f$

$$h = g \star f$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m-k,n-1]$$

filtering (cross-correlation)

$$h = g \otimes f$$

output filter image
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 filter flipped filter flipped

convolution $h = g \star f$

$$h = g \star f$$

$$h[m, n] = \sum_{k,l} g[k, l] f[m - k, n - 1]$$

filtering
(cross-correlation)

$$h = g \otimes f$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 filter flipped

convolution

$$h = g \star f$$

$$h[m, n] = \sum_{k,l} g[k, l] f[m - k, n - 1]$$

Suppose g is a Gaussian filter. How does convolution differ from filtering?

	Recall		
<u>I</u> 16	I	2	ı
	2	4	2
	Ι	2	ı

Commutative

$$a \star b = b \star a$$
.

Associative

$$(((a \star b_1) \star b_2) \star b_3) = a \star (b_1 \star b_2 \star b_3)$$

Distributes over addition

$$a \star (b+c) = (a \star b) + (a \star c)$$

Scalars factor out

$$\lambda a \star b = a \star \lambda b = \lambda (a \star b)$$

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Recall ...

