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Represent the ‘world’ as a set of random variablesX

X = {x,y} location on the ground plane

X = {x,y, z} position in the 3D world

X = {x, ẋ} position and velocity

X = {x, ẋ,f1, . . . ,fn}

position, velocity and 
location of landmarks



Object tracking (localization)

X = {x,y}
e.g., location on the ground plane

X = {x, ẋ,f1, . . . ,fn}
e.g., position and velocity of 

robot and location of landmarks

Object location and world landmarks  
(localization and mapping)



The state of the world changes over time
Xt



The state of the world changes over time
Xt

X0,X1, . . . ,Xt

So we use a sequence of random variables:



The state of the world changes over time
Xt

X0,X1, . . . ,Xt

The state of the world is usually uncertain so we 
think in terms of a distribution

P (X0,X1, . . . ,Xt)

So we use a sequence of random variables:

How big is the space of this distribution?



X = {x,y} the location on the ground planeIf the state space is

is the probability over all possible trajectories through a room of length t+1

P (X0,X1, . . . ,Xt)



When we use a sensor (camera),  
we don’t have direct access to the state but noisy 

observations of the state

Et

How big is the space of this distribution?

P (X0,X1, . . . ,Xt,E1,E2, . . . ,Et)
(all possible ways of observing all possible trajectories)



all possible ways of observing all possible trajectories of length t

true trajectory 
x

observations E



P (X0,X1, . . . ,Xt,E1,E2, . . . ,Et)

So we think of the world in terms of the distribution

observed variables 
(evidence)

unobserved variables 
(hidden state)



P (X0,X1, . . . ,Xt,E1,E2, . . . ,Et)

So we think of the world in terms of the distribution

observed variables 
(evidence)

unobserved variables 
(hidden state)

How big is the space of this distribution?



P (X0,X1, . . . ,Xt,E1,E2, . . . ,Et)

So we think of the world in terms of the distribution

observed variables 
(evidence)

unobserved variables 
(hidden state)

How big is the space of this distribution?

Can you think of a way to reduce the space?



Reduction 1. Stationary process assumption:

‘a process of change that is governed by laws 
that do not themselves change over time.’

P (Et|Xt) = Pt(Et|Xt)

the model doesn’t change over time



‘a process of change that is governed by laws 
that do not themselves change over time.’

P (Et|Xt) = Pt(Et|Xt)

the model doesn’t change over time

Only have to store one model.

Is this a reasonable assumption?

Reduction 1. Stationary process assumption:



Reduction 2. Markov Assumption:

‘the current state only depends on a finite history 
of previous states.’

First-order Markov Model:

X0 X1 X2 X3 X4

X0 X1 X2 X3 X4

Second-order Markov Model:

P (X0X1, . . . ,XT ,E1E1, . . . ,ET ) = P (X0)
TY

t=1

P (Xt|Xt�1)P (Et|Xt)

P (Xt|Xt�1,Xt�2)

(this relationship is called the motion model)



P (Et|Xt)

The current observation is usually  
most influenced by the current state

Can you think of an observation of a state?

(this relationship is called the observation model)

‘the current observation only depends on current state.’

Reduction 2. Markov Assumption:



you are 
actually here

But GPS tells you that you are here
with probability P (Et|Xt)

For example, GPS is a noisy observation of location.



Reduction 3. Prior State Assumption:

‘we know where the process (probably) starts’

X0

we’ll start here



P (X0X1, . . . ,XT ,E1E1, . . . ,ET ) = P (X0)
TY

t=1

P (Xt|Xt�1)P (Et|Xt)

Stationary process assumption:
only have to store ____ models 

(assuming only a single variable for state and observation)

Markov assumption:
This is a model of order ___

Applying these assumptions, 
we can decompose the joint probability:

We have significantly reduced the number of parameters



P (X0)
TY

t=1

P (Xt|Xt�1)P (Et|Xt)

motion model 
transition model

sensor model 
observation model

state prior 
prior

Joint Probability of a Temporal Sequence



P (X0)
TY

t=1

P (Xt|Xt�1)P (Et|Xt)

motion model 
transition model

sensor model 
observation model

state prior 
prior

Joint Distribution for a Dynamic Bayesian Network

Hidden Markov Model Kalman Filter

specific instances of a DBN 
covered in this class

(typically taught as discrete but not necessarily) (Gaussian motion model, prior and observation model)

Joint Probability of a Temporal Sequence



Hidden Markov Model



‘In the trunk of a car of 
a sleepy driver’ model

binary random variable (left lane or right lane)

x0 x1 x2 x3 x4

x = {xleft, xright}

right

left

Hidden Markov Model example

two state world!



From a hole in the car you can see the ground

x0 x1 x2 x3 x4

e = {e
gray

, e
yellow

}

e1 e2 e3 e4

binary random variable (road is yellow or road is gray)



x0 x1 x2 x3 x4

e1 e2 e3 e4

xleft xright

P (x0)

P (xt|xt�1)

xleft

xright

xleft xright

e
yellow

egray

xleft xrightP (et|xt)

0.5 0.5 0.7 0.3
0.70.3

0.9 0.2
0.80.1

What needs 
to sum to 

one?

What’s the 
probability 

of staying in  
the left lane 
if I’m in the 
left lane?

What lane 
am I in if I 

see yellow?

Nice visualization here: http://setosa.io/ev/markov-chains/?utm_content=buffer5e504

http://setosa.io/ev/markov-chains/?utm_content=buffer5e504


P (xt|xt�1)

0.9 0.1
0.90.1

xt = R

xt = S

xt�1 = Sxt�1 = R

visualization of the motion model



x0 x1 x2 x3 x4

e1 e2 e3 e4

Is the stationary assumption true?



x0 x1 x2 x3 x4

e1 e2 e3 e4

Is the stationary assumption true?
visibility at night? 

visibility after a day in the car? 
still swerving after one day of driving?



x0 x1 x2 x3 x4

e1 e2 e3 e4

Is the stationary assumption true?
visibility at night? 

visibility after a day in the car? 
still swerving after one day of driving?

Is the Markov assumption true?



x0 x1 x2 x3 x4

e1 e2 e3 e4

Is the stationary assumption true?
visibility at night? 

visibility after a day in the car? 
still swerving after one day of driving?

Is the Markov assumption true?
what can you learn with higher order models? 

what if you have been in the same lane for the last hour?

In general, assumptions are not correct but they simplify the 
problem and work most of the time when designed appropriately


