
Reconstruction
16-385 Computer Vision (Kris Kitani) 

Carnegie Mellon University



Structure
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Motion
 (camera geometry) Measurements

Pose Estimation known estimate 3D to 2D 
correspondences

Triangulation estimate known 2D to 2D 
coorespondences

Reconstruction estimate estimate 2D to 2D 
coorespondences
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Procedure for Reconstruction
1. Compute the Fundamental Matrix F from points 
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Procedure for Reconstruction
1. Compute the Fundamental Matrix F from points 

correspondences  
8-point algorithm

2. Compute the camera matrices P from the Fundamental 
matrix 
P = [ I | 0 ]  and  P’ = [ [e’x]F | e’ ]



Camera matrices corresponding to the 
fundamental matrix F may be chosen as

P = [I|0] P0 = [[e⇥]F|e0]
(See Hartley and Zisserman C.9 for proof)



Decomposing F into R and T
If we have calibrated cameras we have          andK K0

E = K0>FKEssential matrix:
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We get FOUR solutions:
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two possible rotations two possible translations
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Compute determinant of R, valid solution must be equal to 1 
(note: det(R) = -1 means rotation and reflection)

Compute 3D point using triangulation, valid solution has positive Z value 
(Note: negative Z means point is behind the camera )

Which one do we choose?
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Find the configuration where the points is in front of both cameras

Let’s visualize the four configurations…
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1. Normalize the image points x,x’ using K,K’ 

2. Use the 8-point algorithm to find an 
approximation of E (SVD!) 

3. Project E to essential space (SVD!!)  
(set smallest SV to zero) 

4. Recover possible solutions for R and T 
(SVD!!!) 

5. Use point correspondence to find the 
correct R,T pair (don’t use SVD…)

From points correspondences to camera displacement



Procedure for Reconstruction
1. Compute the Fundamental Matrix F from points 

correspondences  
8-point algorithm

2. Compute the camera matrices P from the Fundamental 
matrix 
P = [ I | 0 ]  and  P’ = [ [e’x]F | e’ ]

3. For each point correspondence, compute the point X 
in 3D space (triangularization)  
DLT with x = P X and x’ = P’ X



Projective Ambiguity

• Reconstruction is ambiguous by an arbitrary 3D 
projective transformation without prior knowledge 
of camera parameters



Similarity

Projective

Calibrated cameras
(similarity projection ambiguity)

Uncalibrated cameras
(projective projection ambiguity)
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