

2D Image Transforms

16-385 Computer Vision (Kris Kitani)

Carnegie Mellon University

Extract features from an image ...

what do we do next?

Feature matching

(object recognition, 3D reconstruction, augmented reality, image stitching)

How do you compute the transformation?

Given a set of matched feature points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$
 — set of point correspondences

point in one image

point in the other image

and a transformation

$$x' = f(x; p)$$

transformation function

parameters

Find the best estimate of

What kind of transformation functions are there?

$$oldsymbol{x}' = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$

2D Transformations

translation

rotation

aspect

affine

perspective

cylindrical

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

Scale

Scale

$$x' = ax$$

$$x' = ax$$
$$y' = by$$

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

Scale $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

Shear

$$x' = x + a \cdot y$$
$$y' = b \cdot x + y$$

φ (x', y') φ

Polar coordinates...

$$x = r \cos (\varphi)$$

 $y = r \sin (\varphi)$
 $x' = r \cos (\varphi + \theta)$
 $y' = r \sin (\varphi + \theta)$

Trig Identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2D **linear** transformation

(can be written in matrix form)

$$oldsymbol{x}' = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$

Scale

$$\mathbf{M} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

Flip across y

$$\mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Rotate

$$\mathbf{M} = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$

Flip across origin

$$\mathbf{M} = \left| \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right|$$

Shear

$$\mathbf{M} = \left[egin{array}{ccc} 1 & s_x \\ s_y & 1 \end{array} \right]$$

Identity

$$\mathbf{M} = \left| \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right|$$

How do you represent translation with a 2 x 2 matrix?

How do you represent translation with a 2 x 2 matrix?

Q: How can we represent translation in matrix form?

$$x' = x + t_x$$
$$y' = y + t_y$$

Homogeneous Coordinates

add a one here

Represent 2D point with a 3D vector

Q: How can we represent translation in matrix form?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: append 3rd element and append 3rd column & row

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

A 2D point in an image can be represented as a 3D vector

$$oldsymbol{x} = \left[egin{array}{c} x \ y \end{array}
ight] \qquad \Longleftrightarrow \qquad oldsymbol{X} = \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight]$$

where
$$x = \frac{x_1}{x_3}$$
 $y = \frac{x_2}{x_3}$

Why?

Think of a point on the image plane in 3D

You can think of a conversion to homogenous coordinates as a conversion of a **point** to a **ray**

Conversion:

• 2D point → homogeneous point append 1 as 3rd coordinate

$$\left[\begin{array}{c} x \\ y \end{array}\right] \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array}\right]$$

• homogeneous point \rightarrow 2D point $\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow \begin{bmatrix} x/w \\ y/w \end{bmatrix}$

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow \left[\begin{array}{c} x/w \\ y/w \end{array}\right]$$

Special Properties

Scale invariant

$$\begin{bmatrix} x & y & w \end{bmatrix}^{\top} = \lambda \begin{bmatrix} x & y & w \end{bmatrix}^{\top}$$

Point at infinity

$$\begin{bmatrix} x & y & 0 \end{bmatrix}$$

Undefined

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Translate

Scale

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shear Rotate

Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{\mathsf{x}}, \mathbf{t}_{\mathsf{y}}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{\mathsf{x}}, \mathbf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

Does the order of multiplication matter?

2D transformations

Figure 1: Basic set of 2D planar transformations

Name	Matrix	# D.O.F.
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3}$	2
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3
similarity	$\left[\begin{array}{c c} s \boldsymbol{R} & \boldsymbol{t} \end{array}\right]_{2 \times 3}$	4
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8

Affine Transformation

Affine transformations are combinations of

- Linear transformations, and
- Translations

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition (affine times affine is affine)

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Coming soon...

Projective Transform

Projective transformations are combos of

- Affine transformations, and
- Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

