
Detecting Corners
16-385 Computer Vision

Carnegie Mellon University (Kris Kitani)

Why detect corners?

Image alignment (homography, fundamental matrix)

3D reconstruction

Motion tracking

Object recognition

Indexing and database retrieval

Robot navigation

Planar object instance recognition
Database of planar objects Instance recognition

3D object recognition
Database of 3D objects 3D objects recognition

Recognition under occlusion

Location Recognition

Robot Localization

Map built over time

Example: Image Matching

How would you find corresponding points?

NASA Mars Rover images

Where are the corresponding points?

What type of features were you trying to match?
Explain to me your thought process.

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?

Pick a point in the image.
Find it again in the next image.

What type of feature would you select?
a corner

How do you find a corner?

How do you find a corner?

Easily recognized by looking through a small window
!

Shifting the window should give large change in intensity

[Moravec 1980]

“edge”: 
no change along the edge

direction

“corner”: 
significant change in all

directions

“flat” region: 
no change in all

directions

Easily recognized by looking through a small window
!

Shifting the window should give large change in intensity

[Moravec 1980]

Design a program to detect corners
(hint: use image gradients)

Finding corners
(a.k.a. PCA)

1.Compute image gradients over
small region!

2.Subtract mean from each image
gradient!

3.Compute the covariance matrix!

4.Compute eigenvectors and
eigenvalues!

5.Use threshold on eigenvalues to
detect corners

I

x

=
@I

@x

Iy =
@I

@y

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5


u
v

�
= �

2

4

P
p2P

I
x

I
t

P
p2P

I
y

I
t

3

5

1. Compute image gradients over a small region
(not just a single pixel)

1. Compute image gradients over a small region
(not just a single pixel)

I

x

=
@I

@x

Iy =
@I

@y

array of x gradients

array of y gradients

visualization of gradients

image

X derivative

Y derivative

I

x

=
@I

@x

I

x

=
@I

@x

I

x

=
@I

@x

Iy =
@I

@y
Iy =

@I

@y
Iy =

@I

@y

What does the distribution tell you about the region?

I

x

=
@I

@x

I

x

=
@I

@x

I

x

=
@I

@x

Iy =
@I

@y
Iy =

@I

@y
Iy =

@I

@y

distribution reveals edge orientation and magnitude

I

x

=
@I

@x

I

x

=
@I

@x

I

x

=
@I

@x

Iy =
@I

@y
Iy =

@I

@y
Iy =

@I

@y

How do you quantify orientation and magnitude?

2. Subtract the mean from each image gradient

2. Subtract the mean from each image gradient

plot intensities

constant intensity
gradient

intensities along the line

2. Subtract the mean from each image gradient

plot intensities

constant intensity
gradient

I

x

=
@I

@x

Iy =
@I

@y

intensities along the line

plot of image gradients

subtract mean

2. Subtract the mean from each image gradient

plot intensities

constant intensity
gradient

I

x

=
@I

@x

Iy =
@I

@y

intensities along the line

plot of image gradients

I

x

=
@I

@x

Iy =
@I

@y

data is centered
(‘DC’ offset is removed)

subtract mean

3. Compute the covariance matrix

3. Compute the covariance matrix

Where does this covariance matrix come from?

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5


u
v

�
= �

2

4

P
p2P

I
x

I
t

P
p2P

I
y

I
t

3

5

I

x

=
@I

@x

Iy =
@I

@y

array of x gradients array of y gradients

*.=sum()2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5


u
v

�
= �

2

4

P
p2P

I
x

I
t

P
p2P

I
y

I
t

3

5

Error function
Change of intensity for the shift [u,v]:

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Error
function

Some mathematical background…

Error function approximation
Change of intensity for the shift [u,v]:

Second-order Taylor expansion of E(u,v) about (0,0)
(bilinear approximation for small shifts):

first derivative second derivative

Bilinear approximation
For small shifts [u,v] we have a ‘bilinear approximation’:

where M is a 2×2 matrix computed from image derivatives:

Change in
appearance for a

shift [u,v]

M

‘second moment’ matrix
‘structure tensor’

2

4

P
p2P

I
x

I
x

P
p2P

I
x

I
y

P
p2P

I
y

I
x

P
p2P

I
y

I
y

3

5


u
v

�
= �

2

4

P
p2P

I
x

I
t

P
p2P

I
y

I
t

3

5

By computing the gradient covariance matrix…

we are fitting a quadratic to the gradients over a
small image region

Visualization of a quadratic
The surface E(u,v) is locally approximated by a quadratic form

Which error surface indicates a good image feature?

What kind of image patch do these surfaces represent?

flat edge corner

4. Compute eigenvalues and eigenvectors

eig(M)

4. Compute eigenvalues and eigenvectors

eigenvector

eigenvalue

Me = �e (M � �I)e = 0

1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

M � �I

Me = �e (M � �I)e = 0

4. Compute eigenvalues and eigenvectors

1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial
(returns eigenvalues)

det(M � �I) = 0

M � �I

Me = �e (M � �I)e = 0

4. Compute eigenvalues and eigenvectors

1. Compute the determinant of
(returns a polynomial)

eigenvector

eigenvalue

2. Find the roots of polynomial
(returns eigenvalues)

det(M � �I) = 0

M � �I

Me = �e (M � �I)e = 0

3. For each eigenvalue, solve
(returns eigenvectors)

(M � �I)e = 0

4. Compute eigenvalues and eigenvectors

Visualization as an ellipse
Since M is symmetric, we have

We can visualize M as an ellipse with axis lengths determined by
the eigenvalues and orientation determined by R

direction of the
slowest change

direction of the fastest
change

(λmax)-1/2

(λmin)-1/2

Ellipse equation:

T

!
"

#
$
%

&
!
"

#
$
%

&
!
"

#
$
%

&
=!

"

#
$
%

&
=

10
01

10
01

10
01

10
01

A
Eigenvalues

Eigenvectors Eigenvectors

T

!
"

#
$
%

&
!
"

#
$
%

&
!
"

#
$
%

&
=!

"

#
$
%

&
=

10
01

10
04

10
01

10
04

A
Eigenvalues

Eigenvectors Eigenvectors

T

!
"

#
$
%

&

−−

−
!
"

#
$
%

&
!
"

#
$
%

&

−−

−
=!

"

#
$
%

&
=

50.087.0
87.050.0

40
01

50.087.0
87.050.0

75.130.1
30.125.3

A

Eigenvalues

Eigenvectors Eigenvectors

T

!
"

#
$
%

&

−−

−
!
"

#
$
%

&
!
"

#
$
%

&

−−

−
=!

"

#
$
%

&
=

50.087.0
87.050.0

100
01

50.087.0
87.050.0

25.390.3
90.375.7

A

Eigenvalues

Eigenvectors Eigenvectors

interpreting eigenvalues

λ1

λ2

λ2 >> λ1

λ1 >> λ2
�1 ⇠ 0

�2 ⇠ 0

What kind of image patch
does each region represent?

interpreting eigenvalues
‘horizontal’
edge

‘vertical’
edge

flat

corner

λ1

λ2

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

interpreting eigenvalues
‘horizontal’
edge

‘vertical’
edge

flat

corner

λ1

λ2

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

5. Use threshold on eigenvalues to detect corners

flat

λ1

λ2

5. Use threshold on eigenvalues to detect corners

Think of a function to
score ‘cornerness’

flat

λ1

λ2

5. Use threshold on eigenvalues to detect corners

Think of a function to
score ‘cornerness’

strong corner

flat

corner

λ1

λ2

5. Use threshold on eigenvalues to detect corners
^

R = min(�1,�2)

Use the smallest eigenvalue
as the response function

flat

corner

λ1

λ2

5. Use threshold on eigenvalues to detect corners
^

R = �1�2 � (�1 + �2)
2

Eigenvalues need to be
bigger than one.

Can compute this more efficiently…

flat

corner

λ1

λ2

R < 0 R > 0

R < 0R ⌧ 0

R = det(M)� �trace2(M)

5. Use threshold on eigenvalues to detect corners
^

R = det(M)� �trace2(M)

R =
det(M)

trace(M) + �

Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

R = min(�1,�2)

1. Compute x and y derivatives of image
!

!

2. Compute products of derivatives at every pixel
!

!

3. Compute the sums of the products of derivatives at
each pixel

Harris Detector
C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

IGI x
x ∗= σ IGI y

y ∗= σ

xxx
III ⋅=2 yyy III ⋅=2 yxxy III ⋅=

22 ' xx
IGS ∗= σ 22 ' yy IGS ∗= σ xyxy IGS ∗= 'σ

Harris Detector
C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

4. Define the matrix at each pixel
!

!

!

5. Compute the response of the detector at each pixel
!

!

6. Threshold on value of R; compute non-max
suppression.

!
!
"

#

$
$
%

&
=),(),(

),(),(
),(

2

2

yxSyxS
yxSyxS

yxM
yxy

xyx

()2tracedet MkMR −=

Corner response

Thresholded corner response

Non-maximal suppression

rotation invariance

Ellipse rotates but its shape
(i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

intensity changes
Partial invariance to affine intensity change
! Only derivatives are used => invariance to
intensity shift I → I + b

! Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

The Harris detector not invariant to changes in …

Multi-scale Detection
16-385 Computer Vision

Properties of the Harris corner detector

Rotation invariant?

Scale invariant?

Properties of the Harris corner detector

Rotation invariant?

Scale invariant?

Properties of the Harris corner detector

Rotation invariant?

Scale invariant?

edge!
corner!

How can we make a feature detector scale-invariant?

How can we automatically select the scale?

Find local maxima in both position and scale

f

region size

Image 1
f

region size

Image 2

s1 s2

Highest response when the signal has the
same characteristic scale as the filter

Laplacian filter

characteristic scale

characteristic scale - the scale that
produces peak filter response

Multi-scale
2D Blob detection

Full size 3/4 size

What happens if you apply different Laplacian filters?

Full size 3/4 size

What happened when you applied different Laplacian filters?

Full size 3/4 size

What happened when you applied different Laplacian filters?

2.1 4.2 6.0

9.8 15.5 17.0

2.1 4.2 6.0

9.8 15.5 17.0

maximum response

optimal scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

optimal scale
2.1 4.2 6.0 9.8 15.5 17.0

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

maximum
response

maximum
response

cross-scale maximum

local maximum

local maximum

local maximum

4.2

6.0

9.8

implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature

