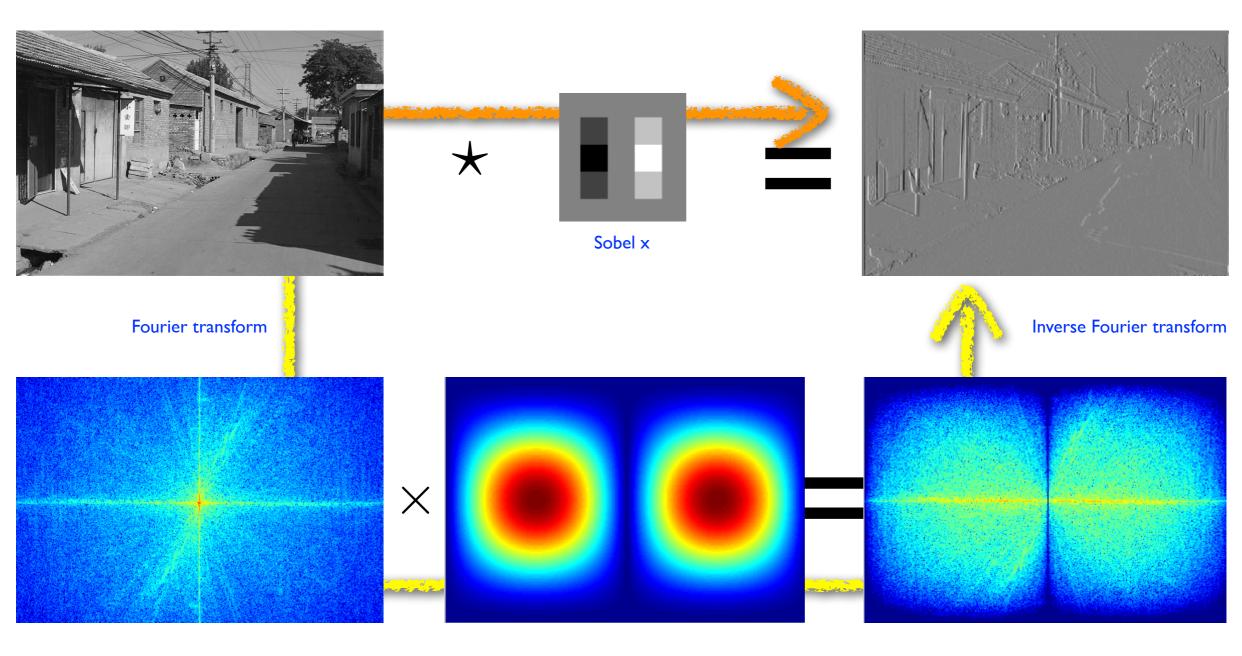


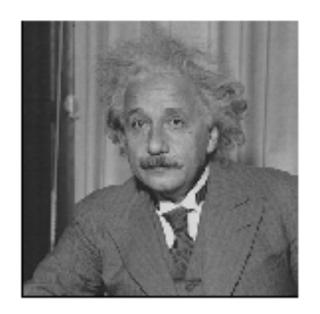
Frequency Domain Filtering

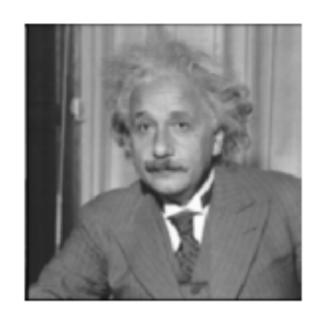
Spatial domain filtering

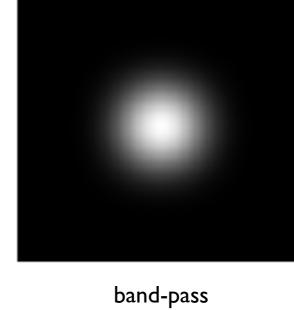


Frequency domain filtering

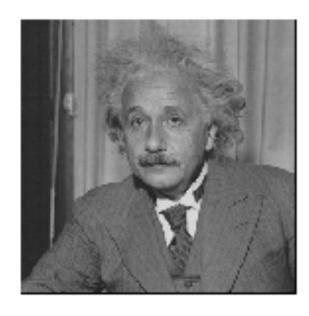
Frequency Domain Filtering

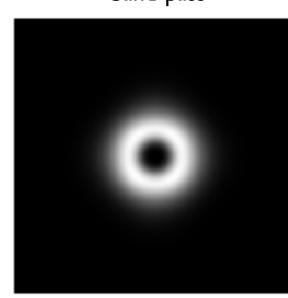




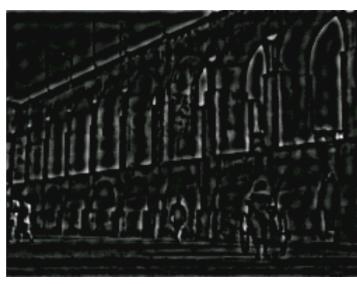


low-pass

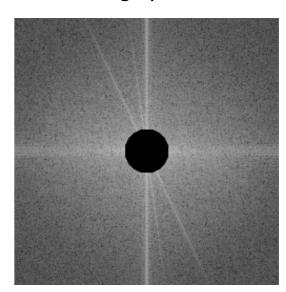




Frequency Domain Filtering



high-pass

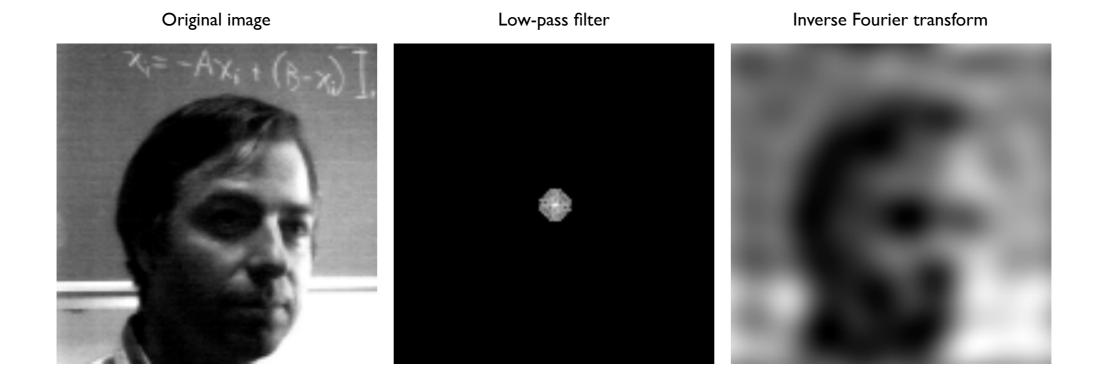


Original image

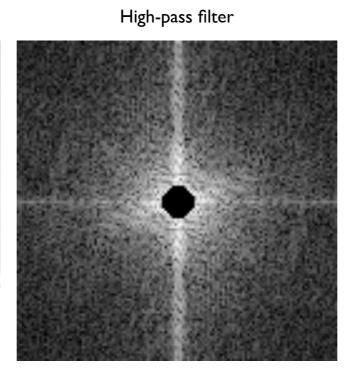
Frequency magnitude

Inverse Fourier transform

Original image Low-pass filter Inverse Fourier transform

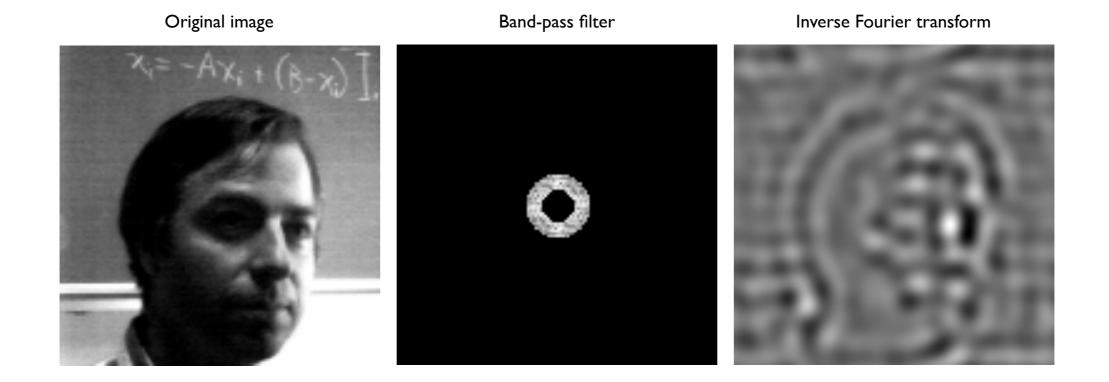


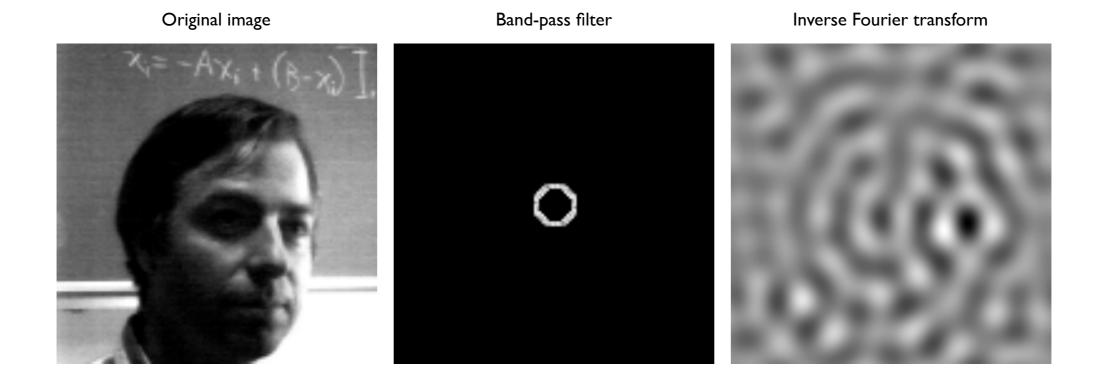
Original image

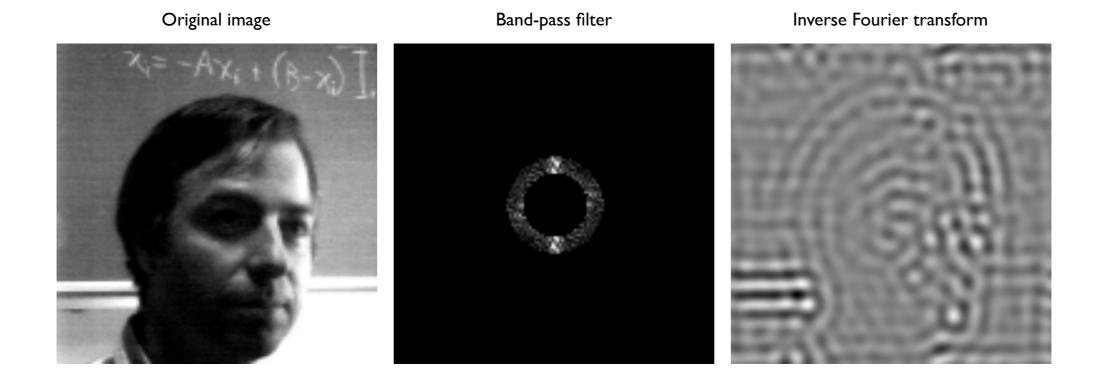


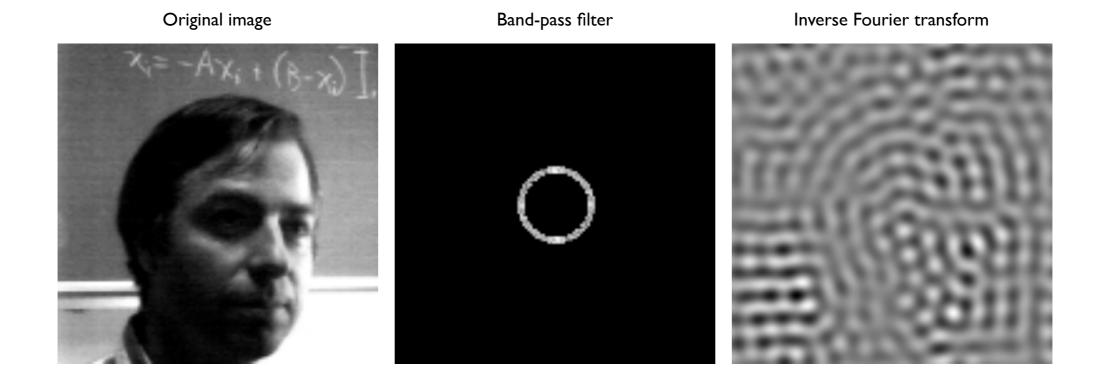
Inverse Fourier transform

Original image High-pass filter Inverse Fourier transform

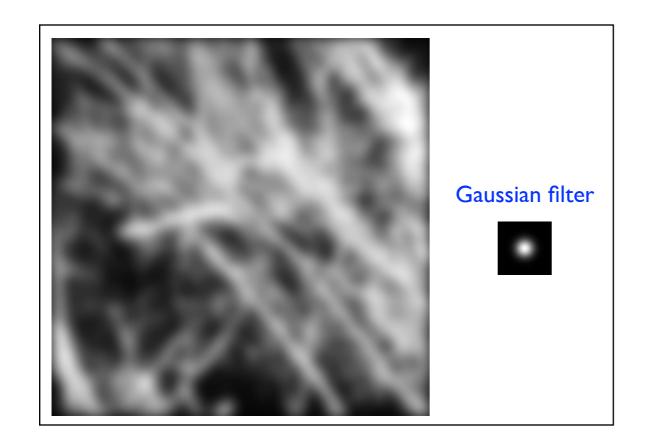


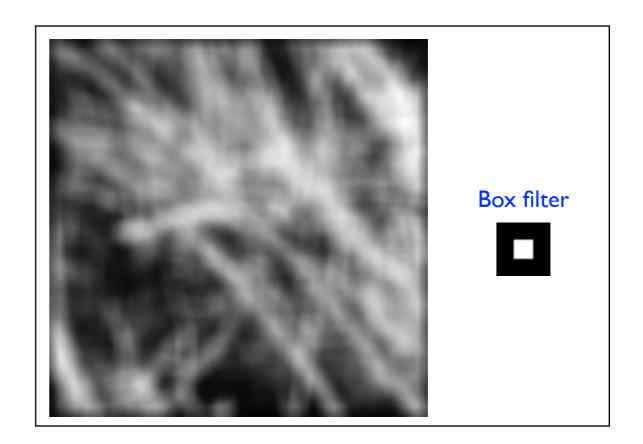


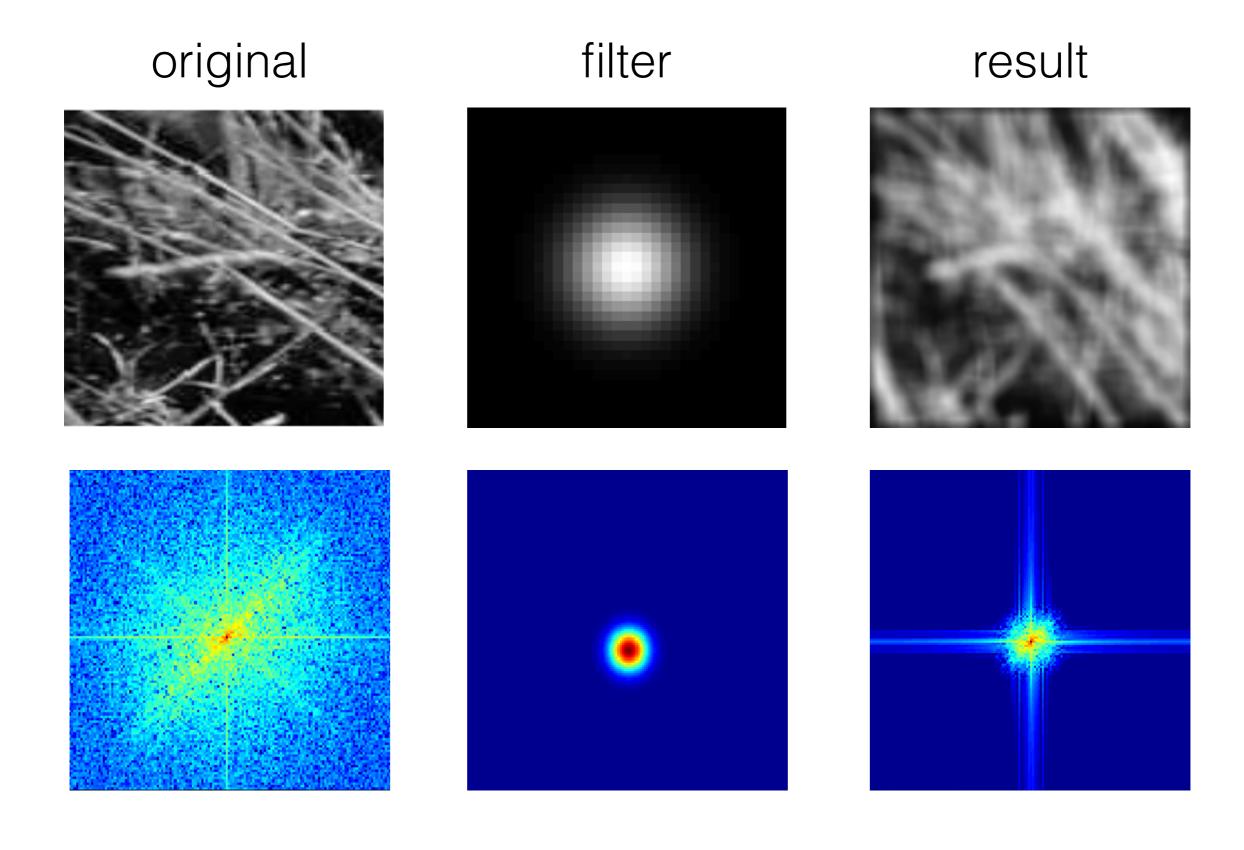


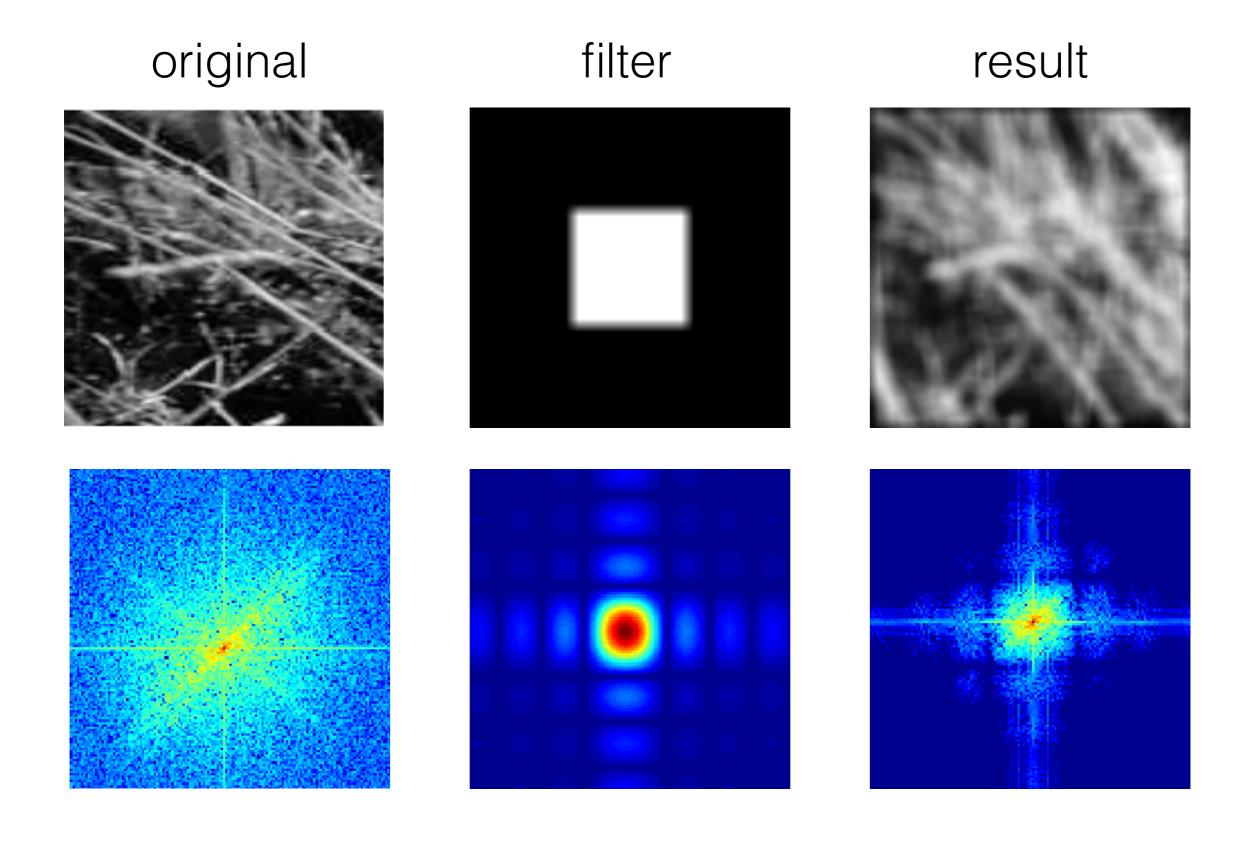


Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

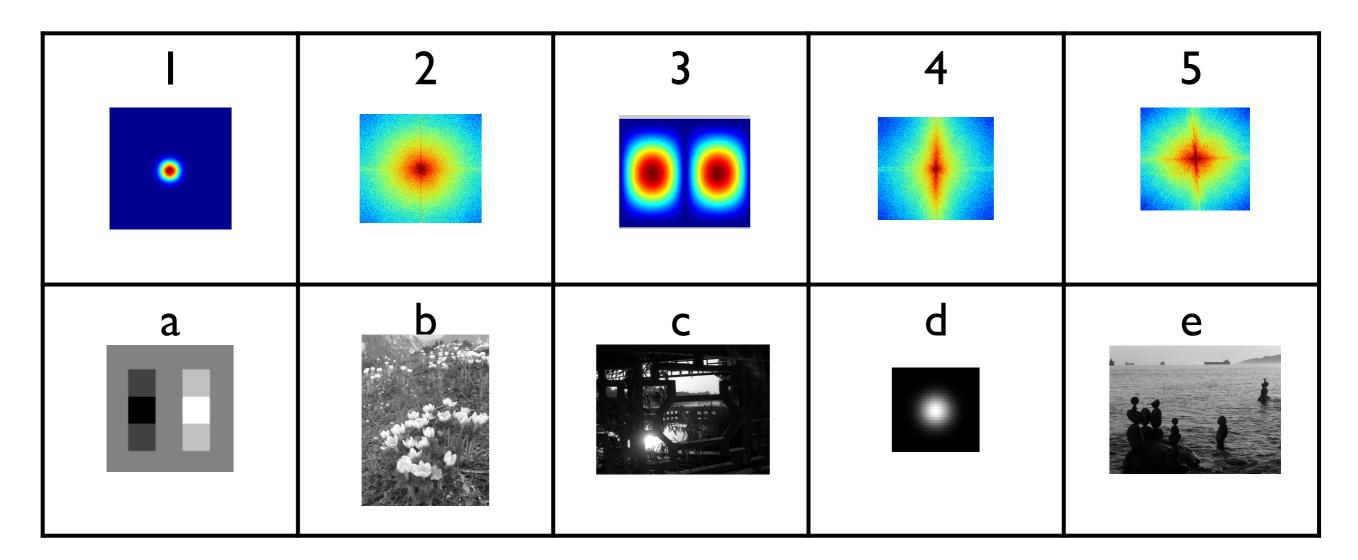








Match the image to the Fourier magnitude image:



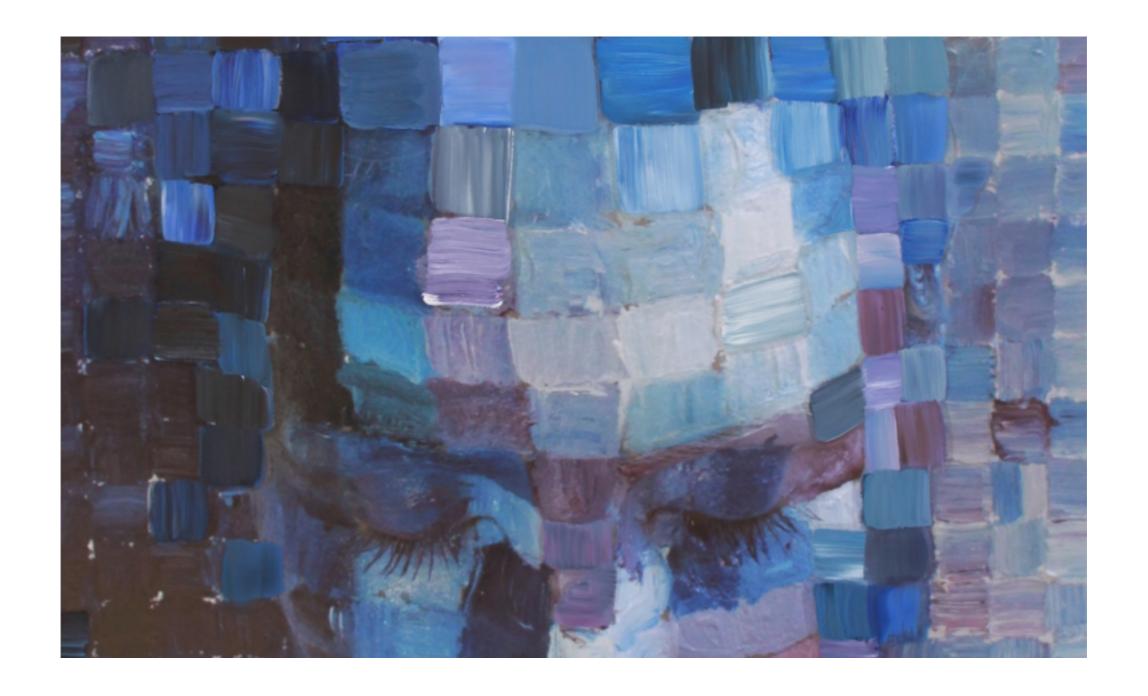
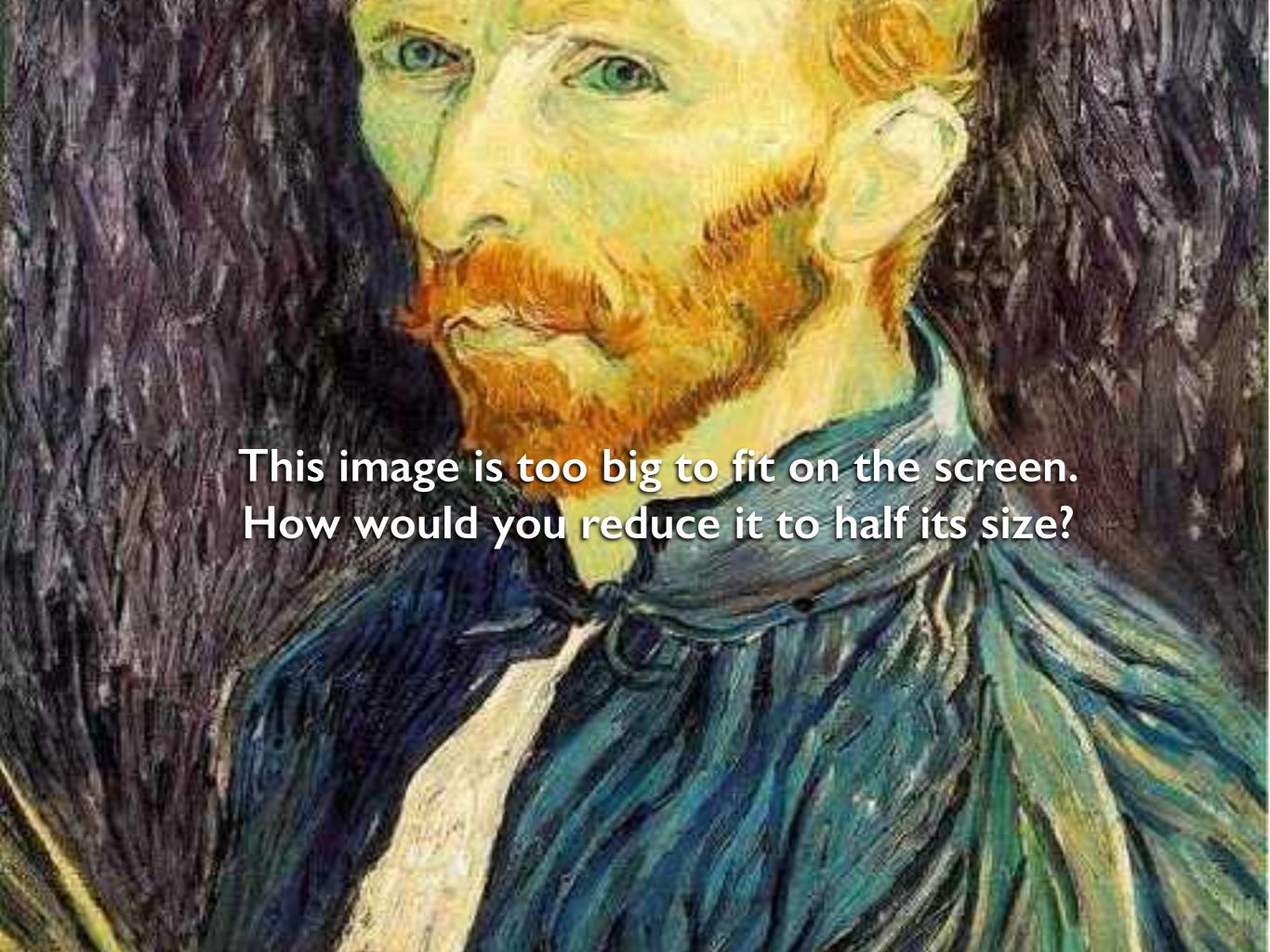
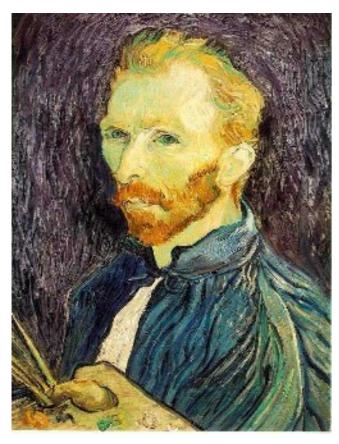


Image Subsampling



Naive image sub-sampling 'throw away even rows and columns'

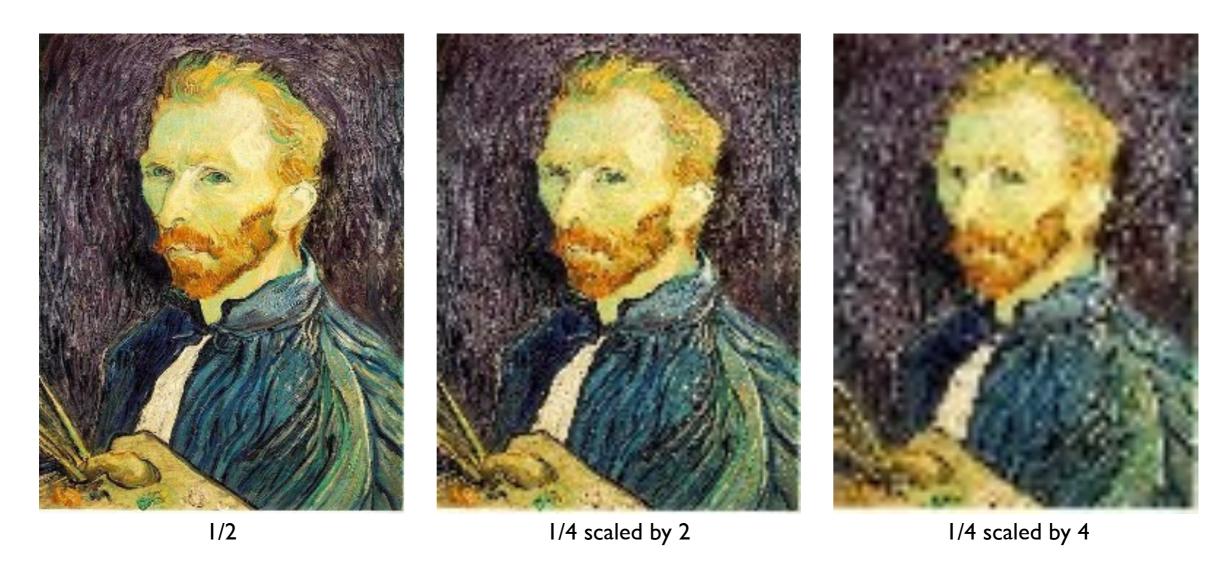


delete even rows delete even columns

delete even rows delete even columns

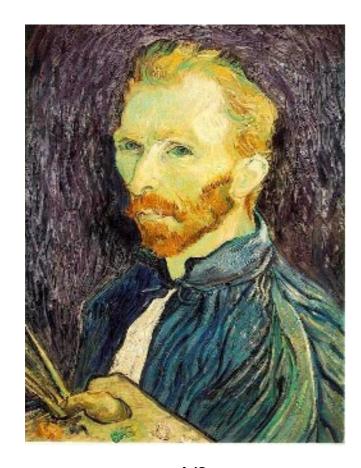
1/8

What are the problems with this approach?



Why is the 1/4 image so blocky (pixelated, aliased)? How can we fix this?

Add Gaussian (lowpass) pre-filtering



Gaussian filtering delete even rows delete even columns

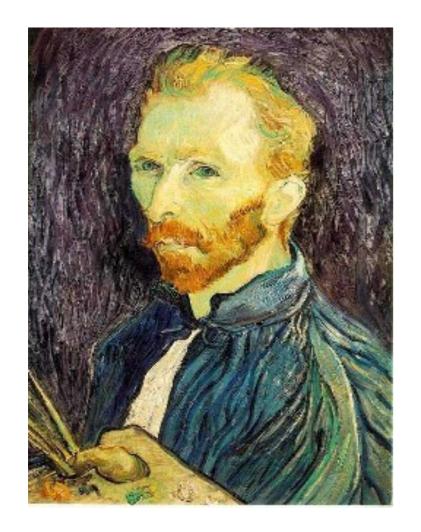
Gaussian filtering delete even rows delete even columns

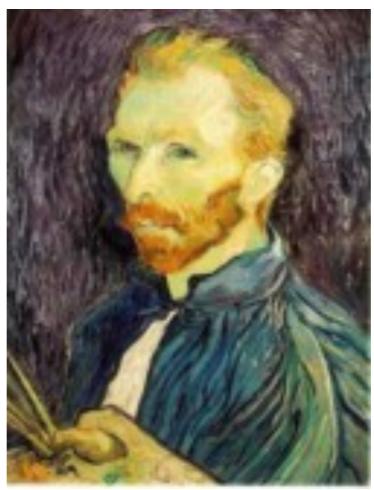
1/8

1/4

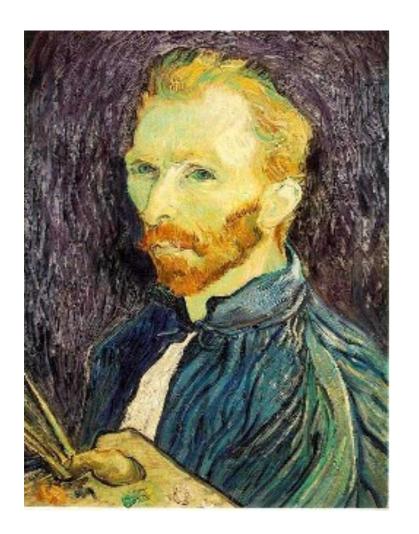
What will the images look like scale to the same size?

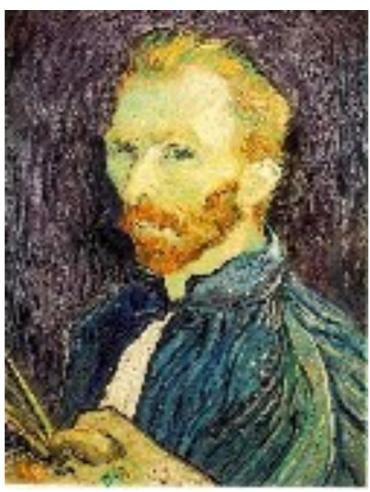
Gaussian pre-filtering





Naive subsampling





Gaussian image pyramid

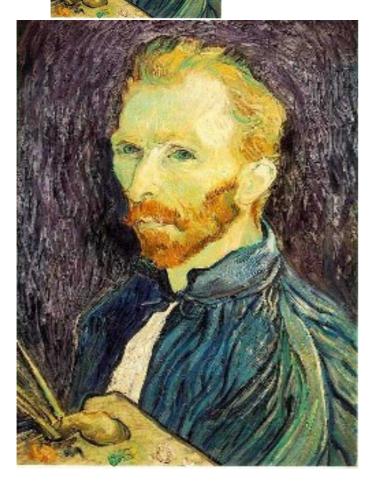


Image Pyramids

What are image pyramids used for?

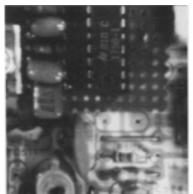
Image compression

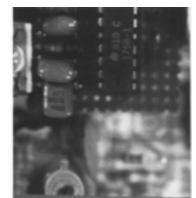
Multi-scale texture mapping

Last sealers of the property of the of the pro

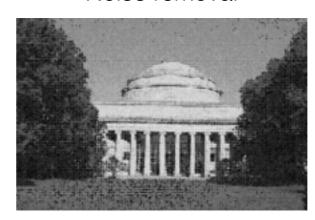
Image blending

Multi-focus composites





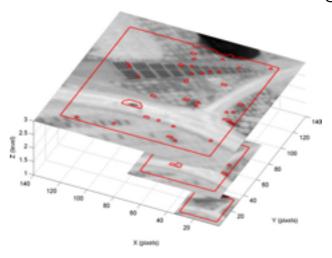
Noise removal

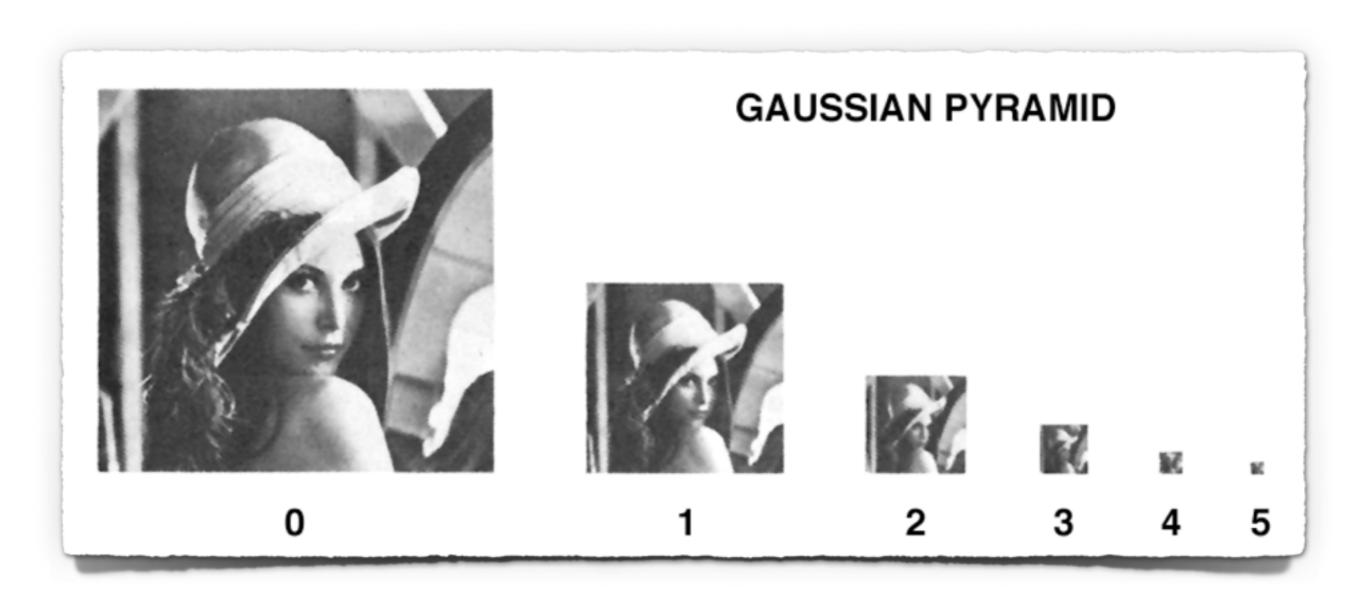


Hybrid images

Multi-scale detection

Multi-scale registration





The Laplacian Pyramid as a Compact Image Code (1983)

Peter J. Burt and Edward H. Adelson

Constructing a Gaussian Pyramid

```
repeat

filter

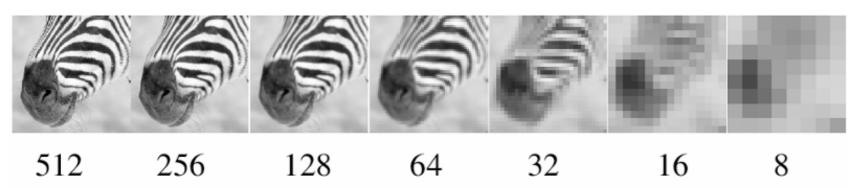
subsample

until min resolution reached

sample

filter
```

Whole pyramid is only 4/3 the size of the original image!

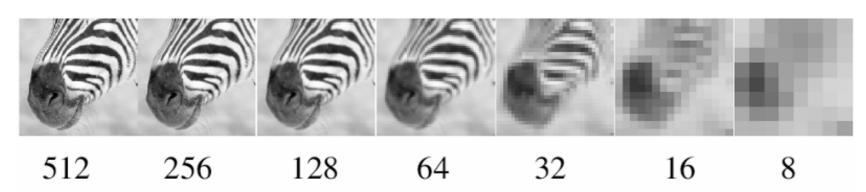


Gaussian pyramid

What happens to the details of the image?

What is preserved at the higher scales?

How would you reconstruct the original image using the upper pyramid?



Gaussian pyramid

What happens to the details of the image?

What is preserved at the higher scales?

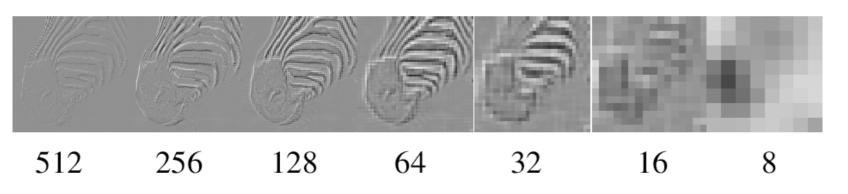
Not possible

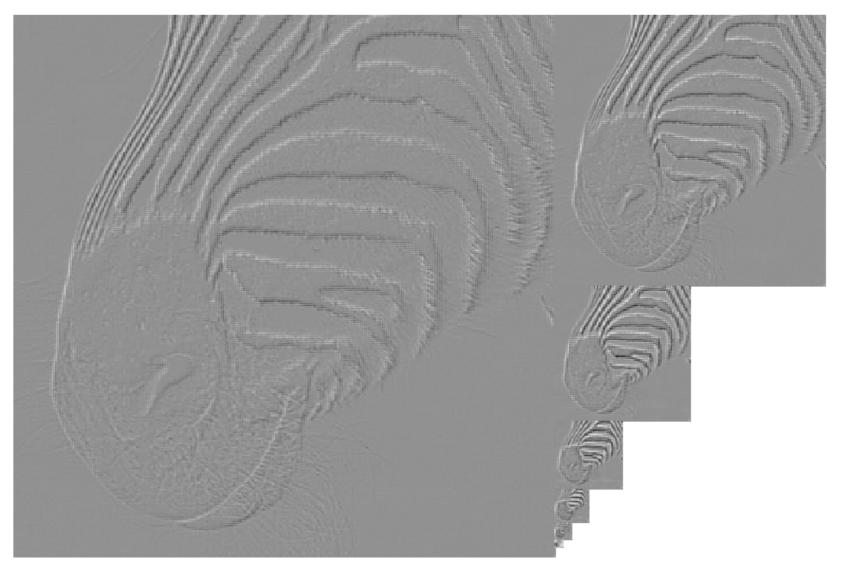
Level 0

Level I

What is lost between levels? What does blurring take away?

We can retain the residuals with a ...





Laplacian pyramid

Retains the residuals (details) between pyramid levels

Can you reconstruct the original image using the upper pyramid?

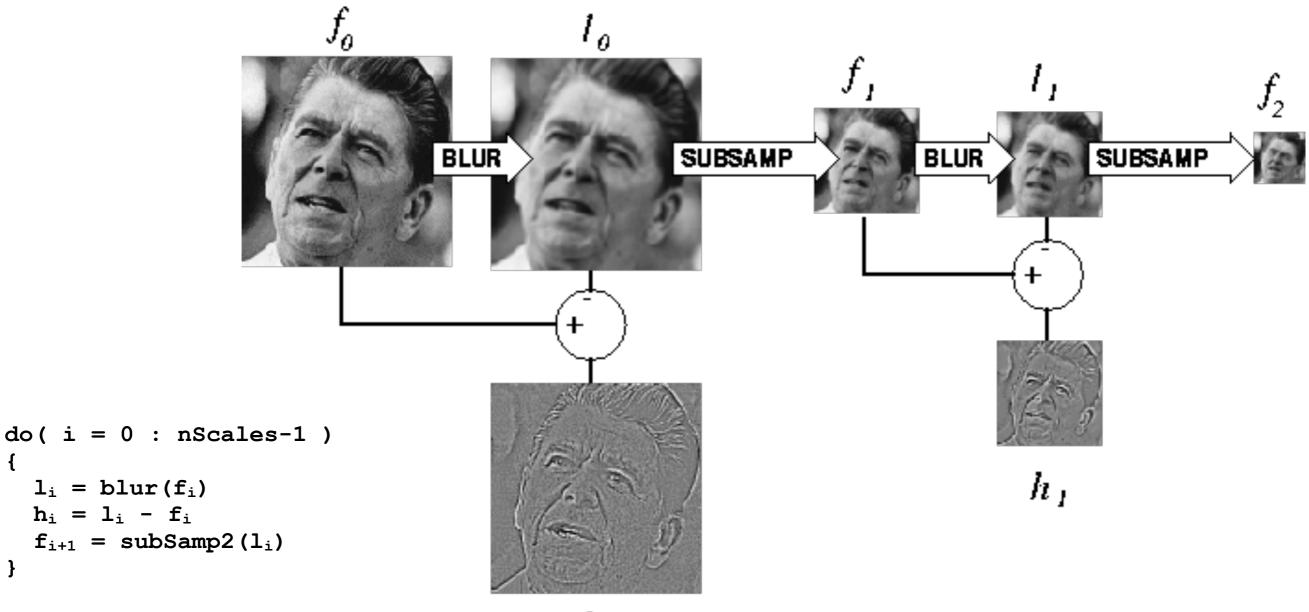
What exactly do you need to reconstruct the original image?

Partial answer:

Low frequency component

High frequency component

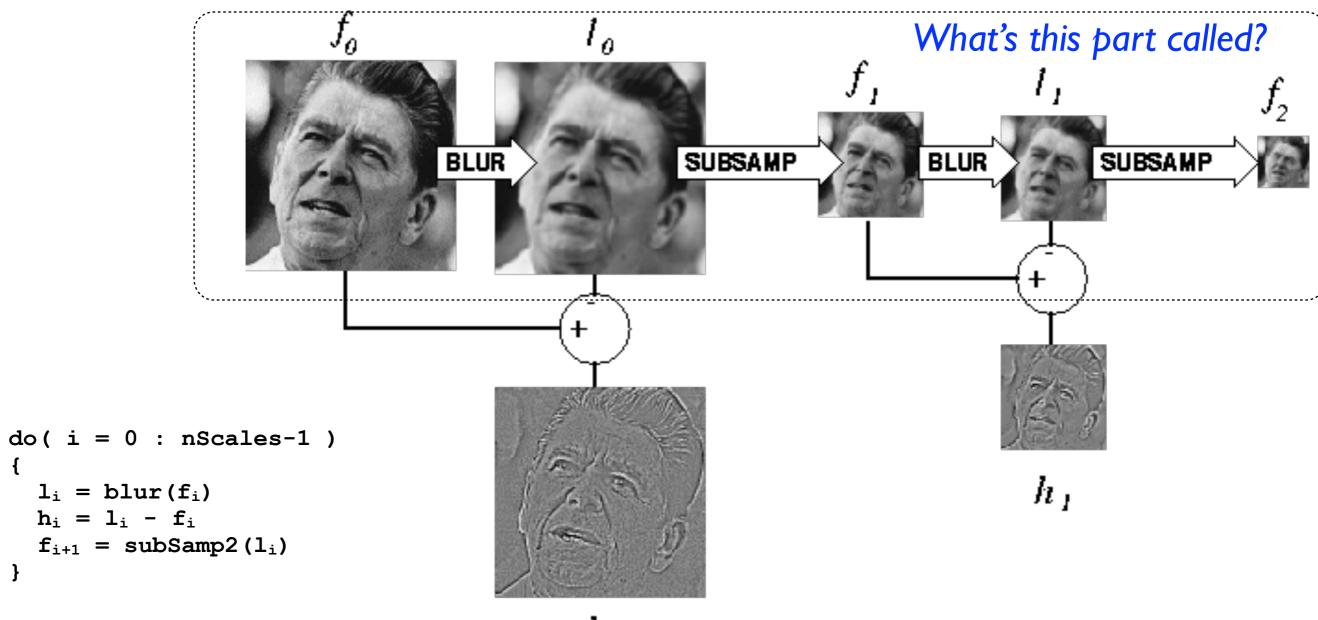
Constructing the Laplacian Pyramid



 h_{θ}

http://sepwww.stanford.edu/~morgan/texturematch/paper html/node3.html

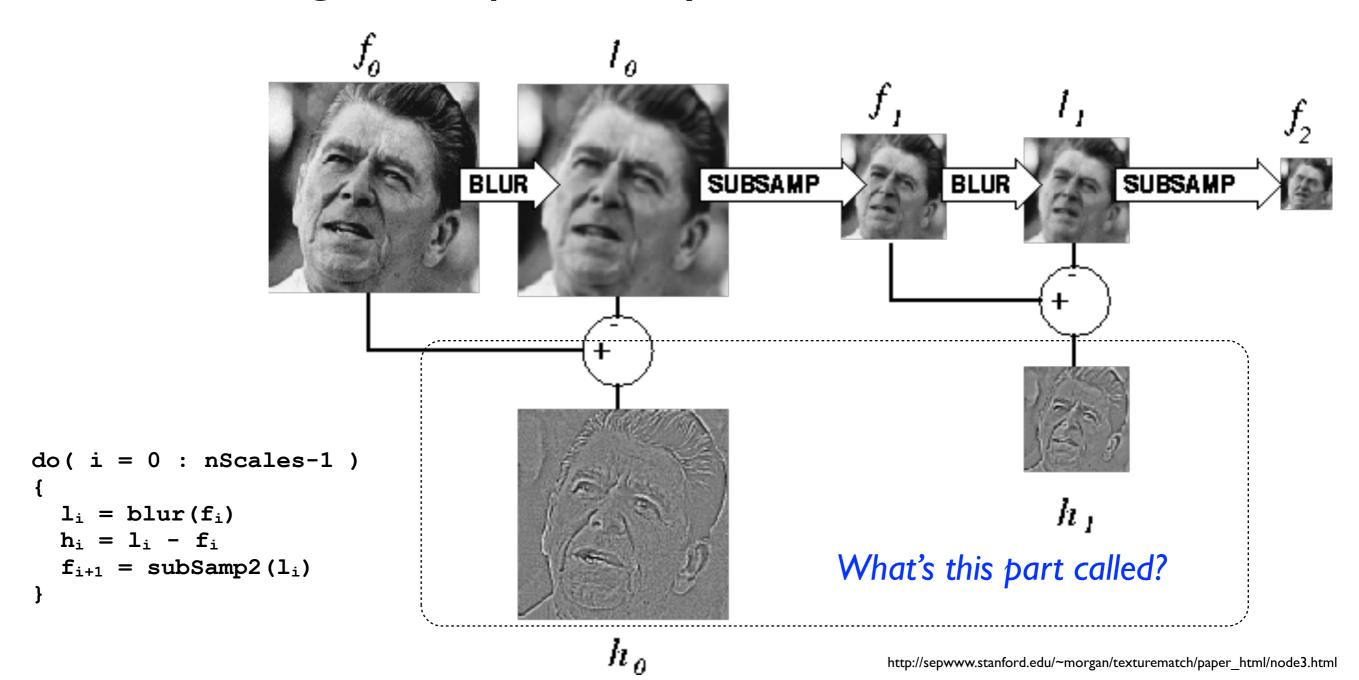
Constructing the Laplacian Pyramid



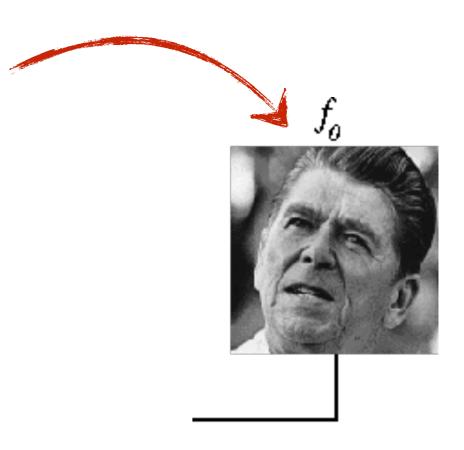
 h_{θ}

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Constructing the Laplacian Pyramid



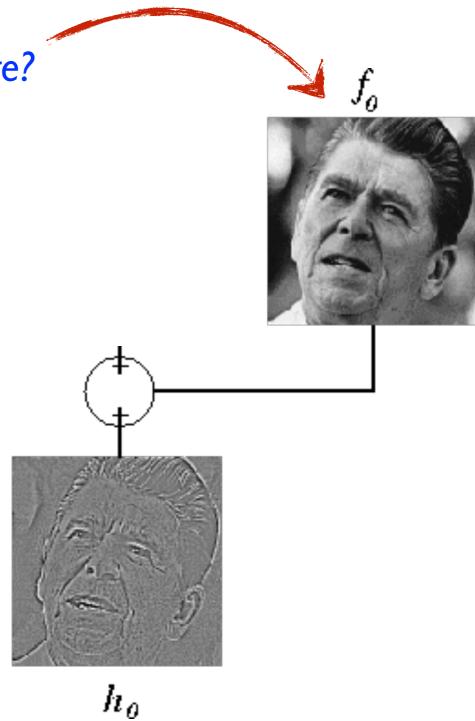
What do you need to construct the original image?



What do you need to construct the original image?

 h_I

(I) Residuals

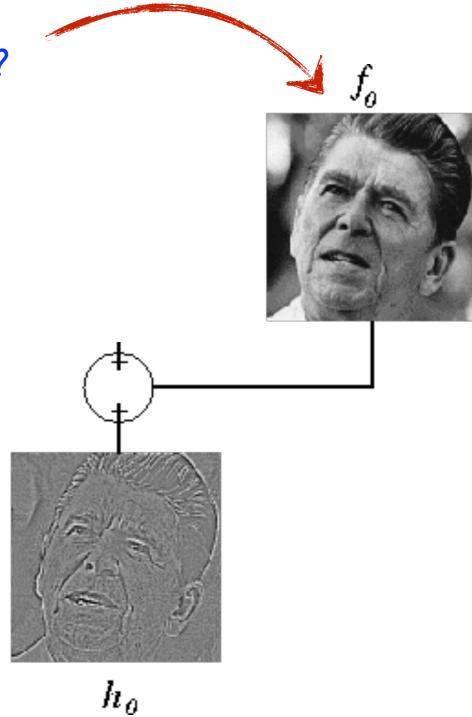


What do you need to construct the original image?

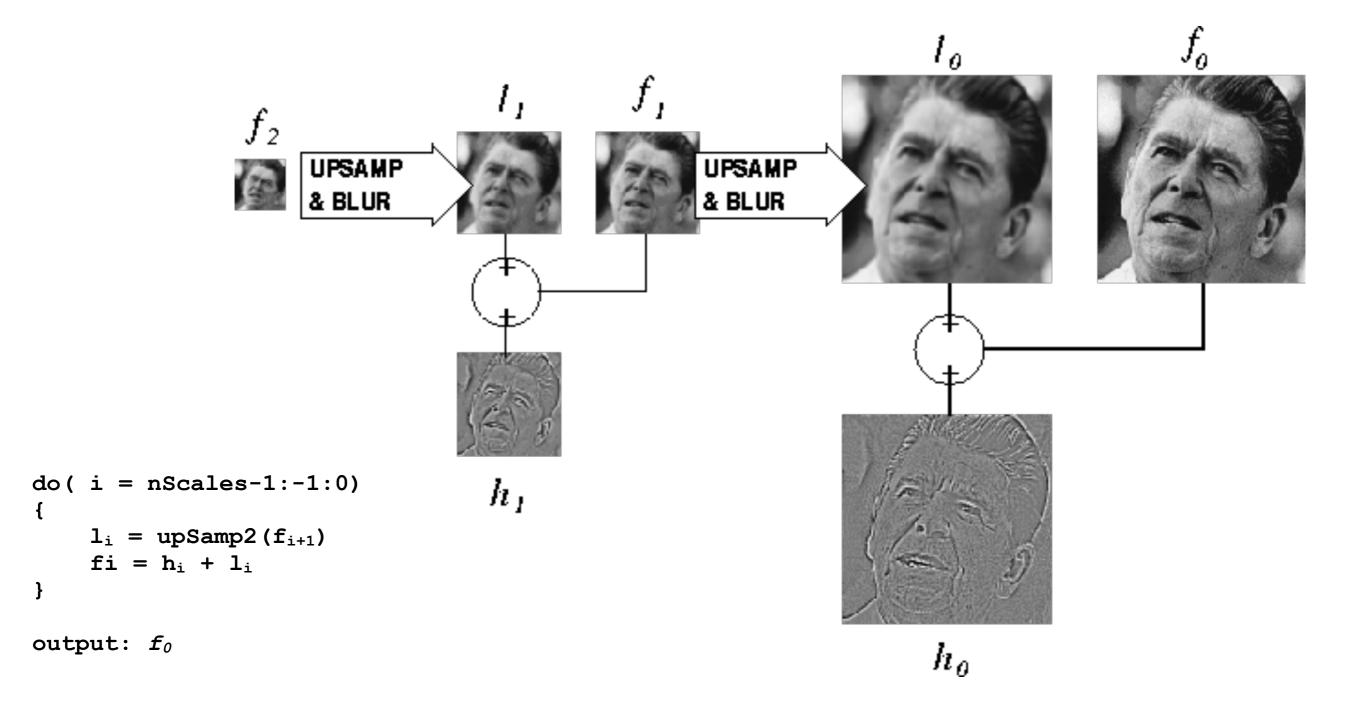
(2) smallest image

 h_I

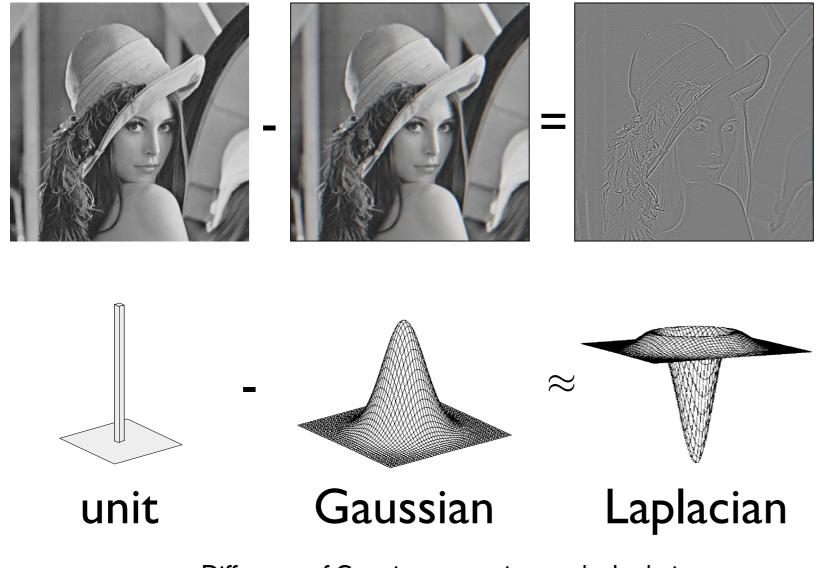
(I) Residuals



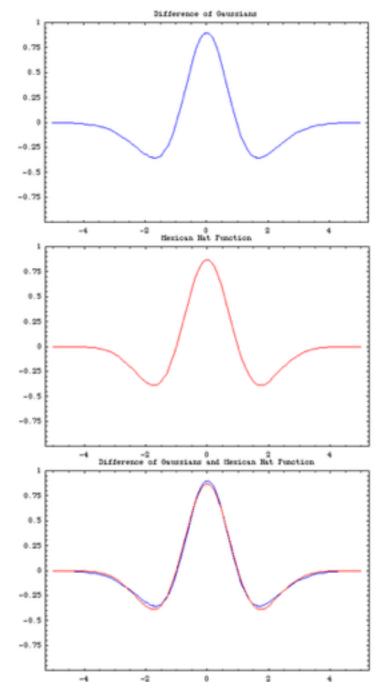
Reconstructing the original image



Why is it called the Laplacian Pyramid?



Difference of Gaussians approximates the Laplacian



http://en.wikipedia.org/wiki/Difference_of_Gaussians

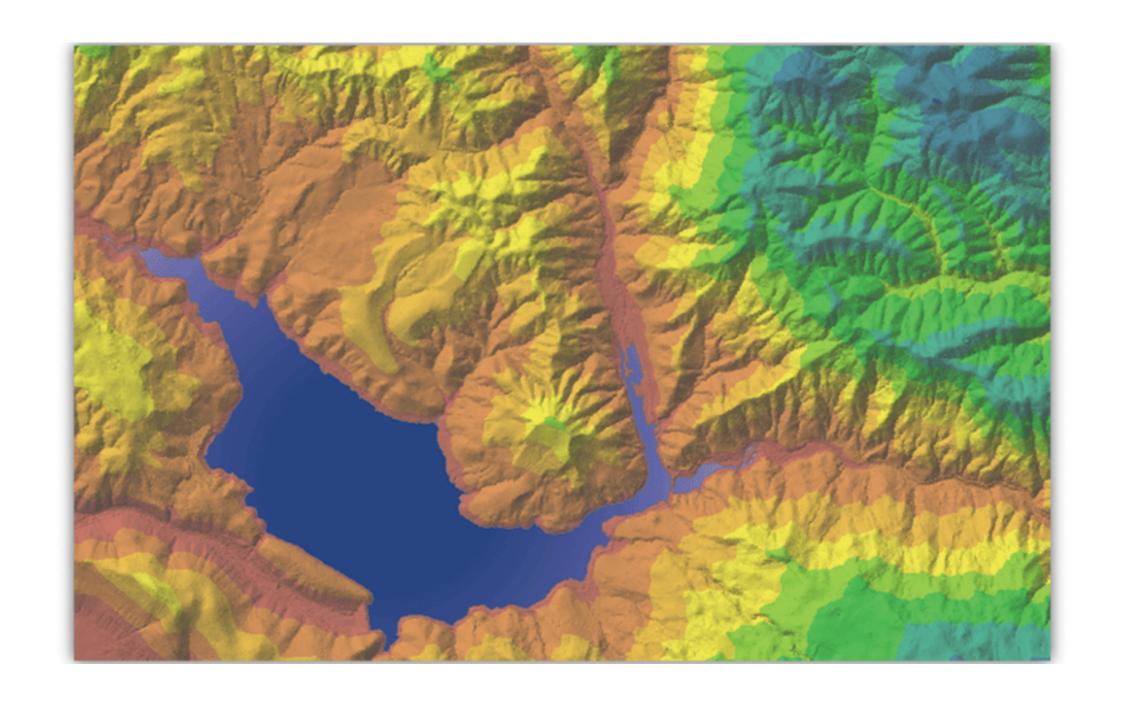
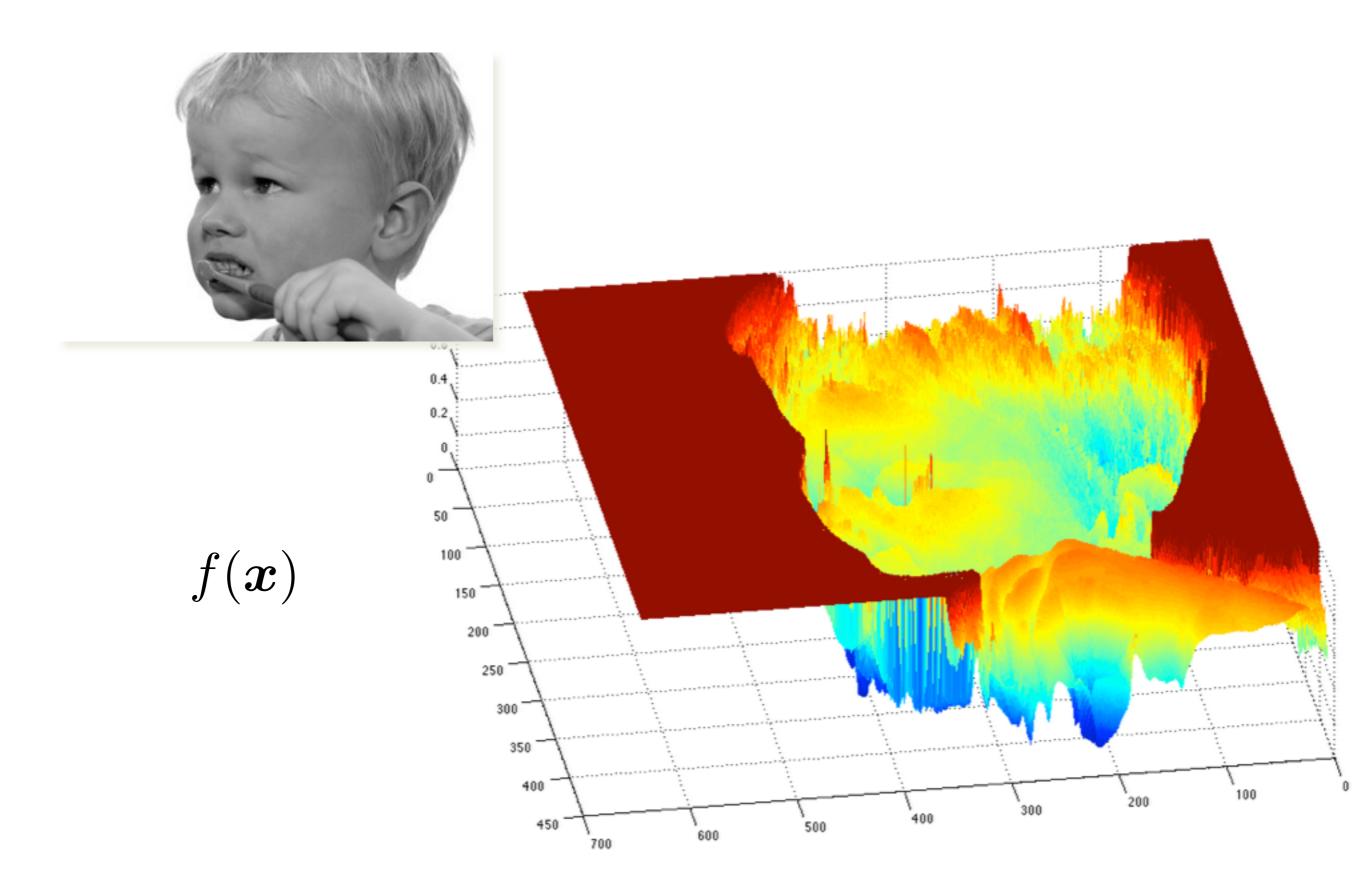


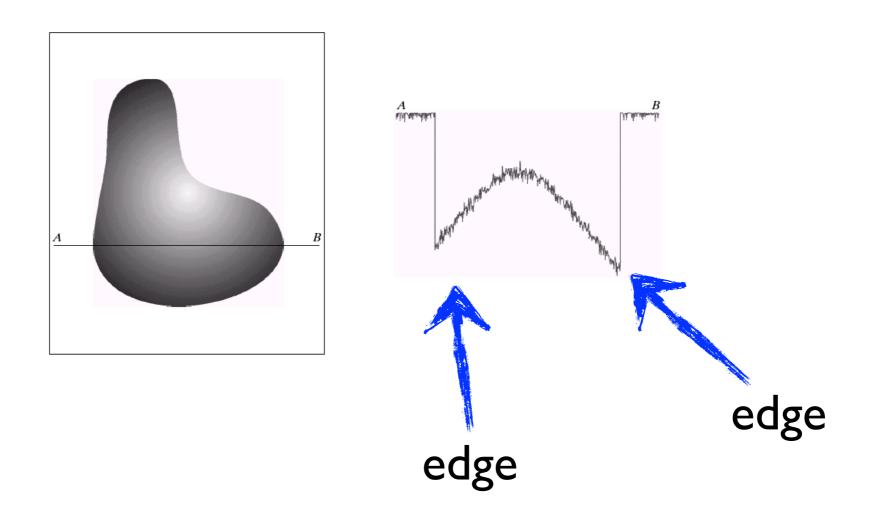
Image Gradients and Gradient Filtering

16-385 Computer Vision

What is an image edge?

Recall that an image is a 2D function





How would you detect an edge?
What kinds of filter would you use?

I	0	-1
2	0	-2
I	0	-1

a derivative filter (with some smoothing)

Filter returns large response on vertical or horizontal lines?

Ι	2	I
0	0	0
- I	-2	-1

a derivative filter (with some smoothing)

Filter returns large response on vertical or horizontal lines?

Is the output always positive?

Ι	2	-
0	0	0
-1	-2	-

a derivative filter (with some smoothing)

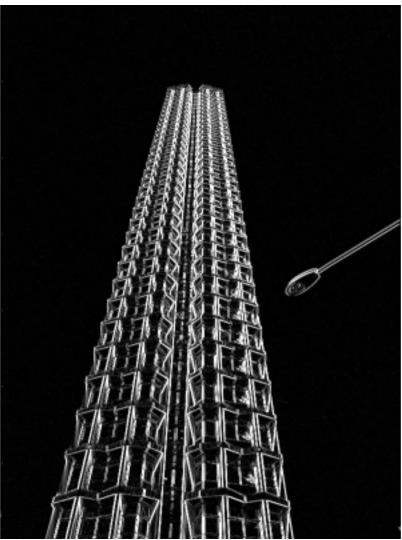
Responds to horizontal lines

Output can be positive or negative

Output of which Sobel filter?

Output of which Sobel filter?

How do you visualize negative derivatives/gradients?



Derivative in X direction

Derivative in Y direction

Visualize with scaled absolute value

I	0	-1
2	0	-2
I	0	-1

Where does this filter come?

Do you remember this from high school?

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Do you remember this from high school?

The derivative of a function f at a point x is defined by the limit

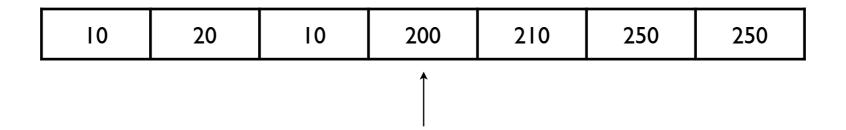
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Approximation of the derivative when h is small This definition is based on the 'forward difference' but ...

it turns out that using the 'central difference' is more accurate

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

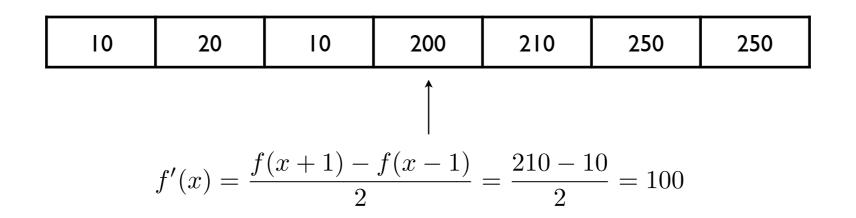
How do we compute the derivative of a discrete signal?



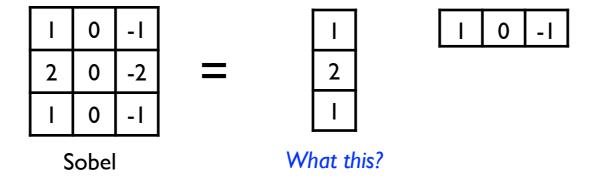
it turns out that using the 'central difference' is more accurate

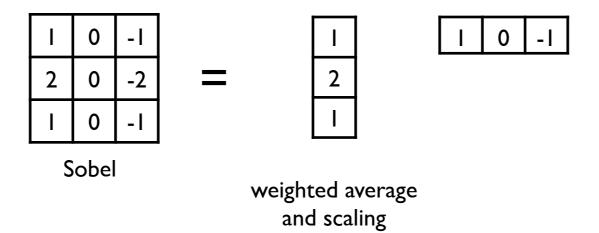
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

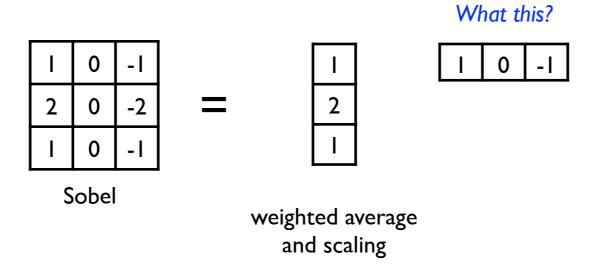
How do we compute the derivative of a discrete signal?

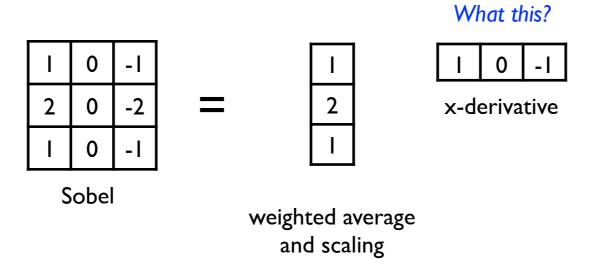


ID derivative filter









The Sobel filter only returns the x and y edge responses. How can you compute the image gradient?

How do you compute the image gradient?

Choose a derivative filter

$$S_y=egin{array}{c|cccc} & 1 & 2 & 1 \ \hline 0 & 0 & 0 \ \hline -1 & -2 & -1 \ \hline \end{array}$$

What is this filter called?

Run filter over image

$$\frac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f}$$

$$rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

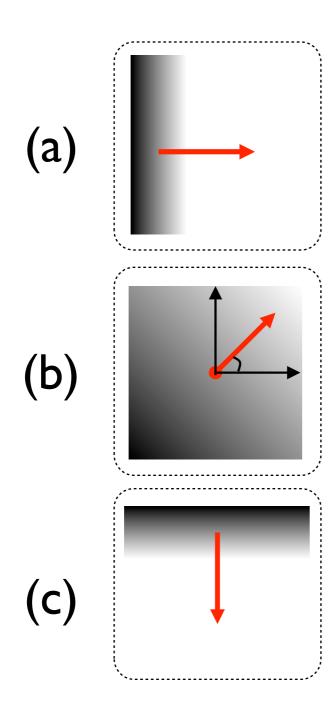
What are the dimensions?

Image gradient

$$abla oldsymbol{f} = \left[\frac{\partial oldsymbol{f}}{\partial x}, \frac{\partial oldsymbol{f}}{\partial y} \right]$$

What are the dimensions?

Matching that Gradient!



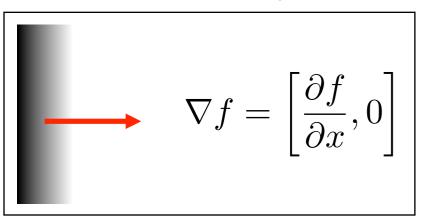
(I)
$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

(2)
$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

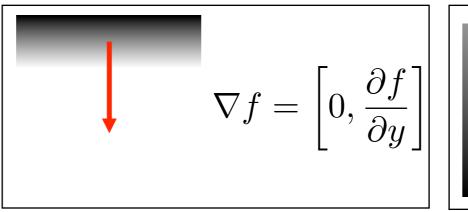
(3)
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Image Gradient

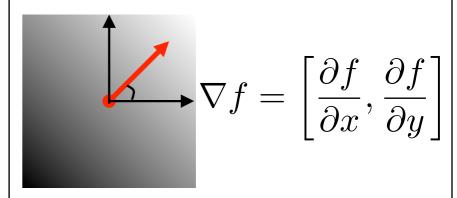
Gradient in x only



Gradient in y only



Gradient in both x and y

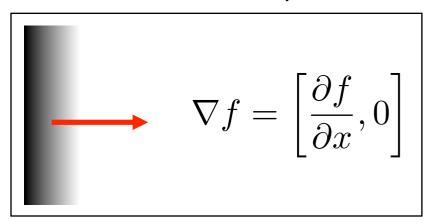


Gradient direction

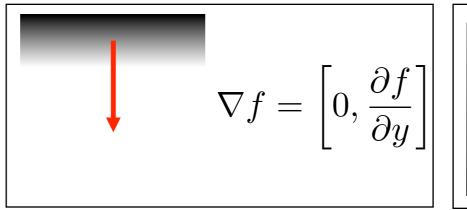
Gradient magnitude

Image Gradient

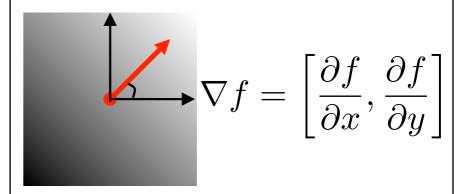
Gradient in x only



Gradient in y only



Gradient in both x and y



Gradient direction

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Gradient magnitude

$$||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

How does the gradient direction relate to the edge?

What does a large magnitude look like in the image?

Common 'derivative' filters

Sobel

I	0	-1
2	0	-2
-	0	-1

I	2	I
0	0	0
- I	-2	- I

Scharr

3	0	-3
10	0	-10
3	0	-3

3	10	3
0	0	0
-3	-10	-3

Prewitt

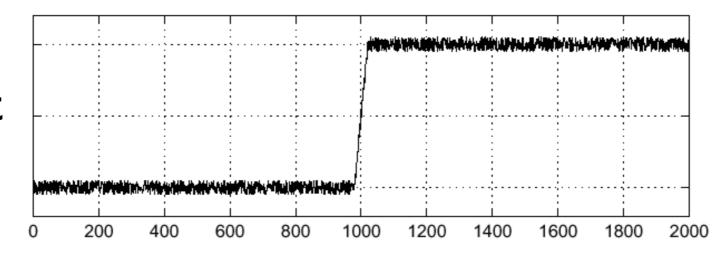
ı	0	-1
Ι	0	- I
Ι	0	-1

I	I	I
0	0	0
-1	-1	-1

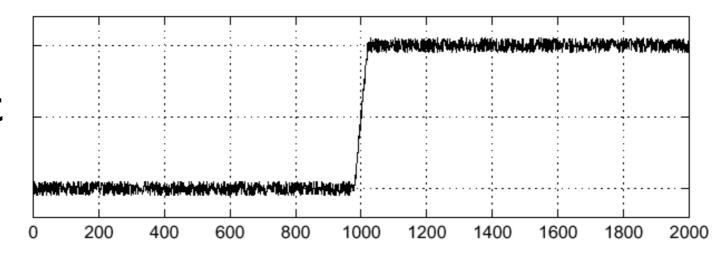
Roberts

0	I
-I	0

Intensity plot

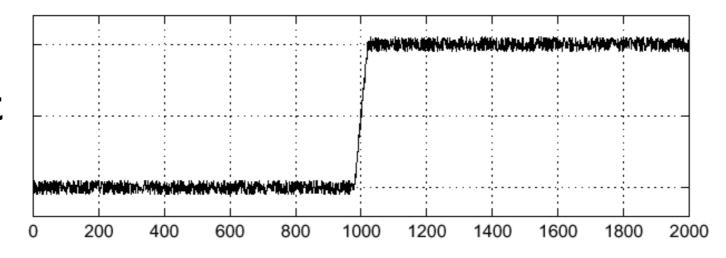


Intensity plot



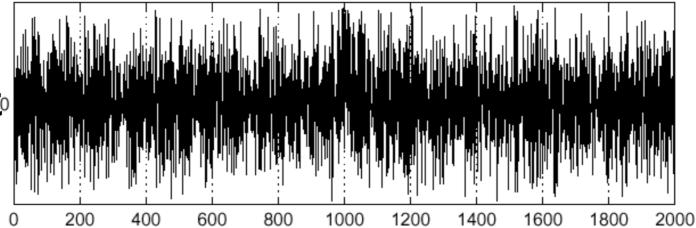
Use a derivative filter!

Intensity plot

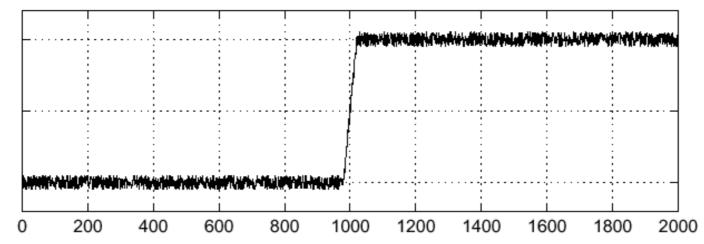


Use a derivative filter!

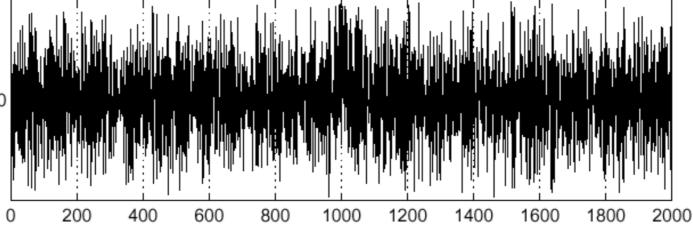
Derivative plot



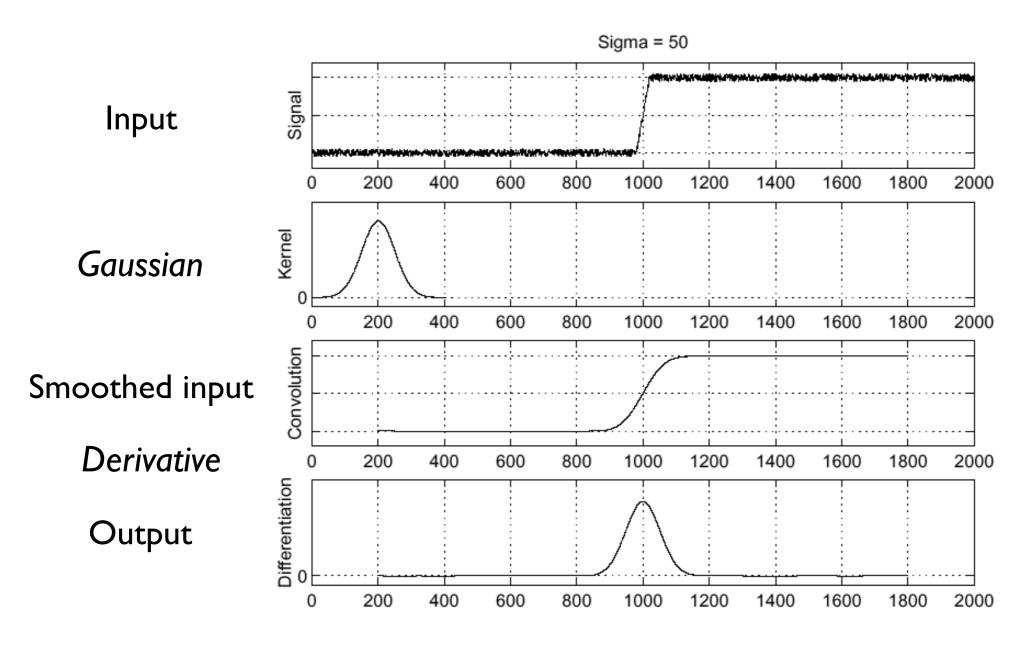
What happened?



Use a derivative filter!

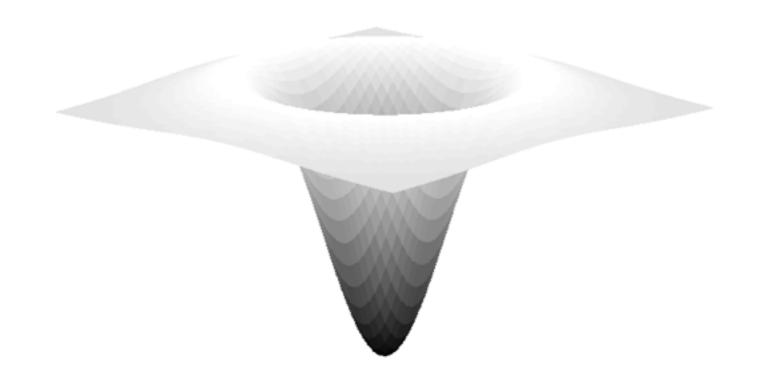


Derivative filters are sensitive to noise



Don't forget to smooth before running derivative filters!

Laplace filter A.K.A. Laplacian, Laplacian of Gaussian (LoG), Marr filter, Mexican Hat Function



Laplace filter A.K.A. Laplacian, Laplacian of Gaussian (LoG), Marr filter, Mexican Hat Function

Laplace filter A.K.A. Laplacian, Laplacian of Gaussian (LoG), Marr filter, Mexican Hat Function

finite difference

first-order
$$f'(x) = \lim_{h \to 0} \frac{f(x + 0.5h) - f(x - 0.5h)}{h}$$
 ite difference

derivative filter

second-order finite difference

$$f''(x) \approx \frac{\delta_h^2[f](x)}{h^2} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

Laplace filter

first-order finite difference

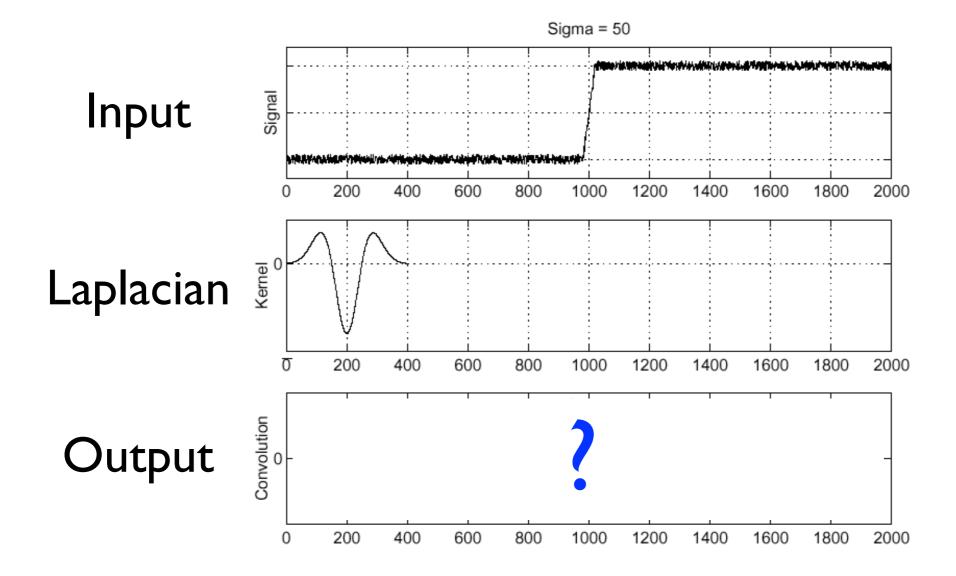
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

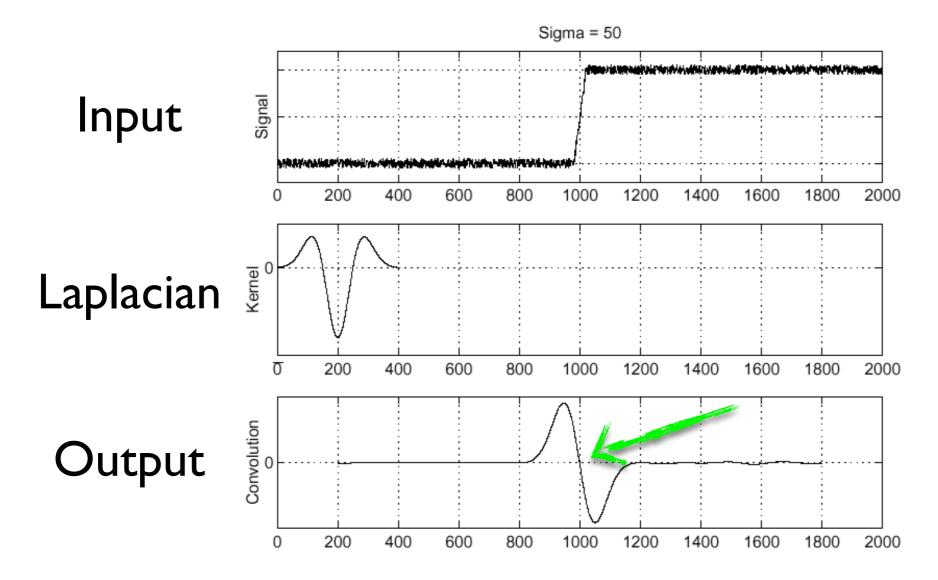
derivative filter

second-order finite difference

$$f''(x) \approx \frac{\delta_h^2[f](x)}{h^2} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

Laplace filter





Zero crossings are more accurate at localizing edges Second derivative is noisy

2D Laplace filter

I -2 I

ID Laplace filter

?	?	?
?	?	?
?	?	?

2D Laplace filter

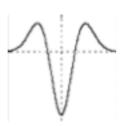
2D Laplace filter

I -2 I

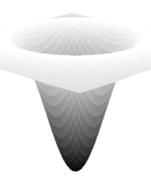
ID Laplace filter

?	?	?
?	?	?
?	?	?

2D Laplace filter



hint



2D Laplace filter

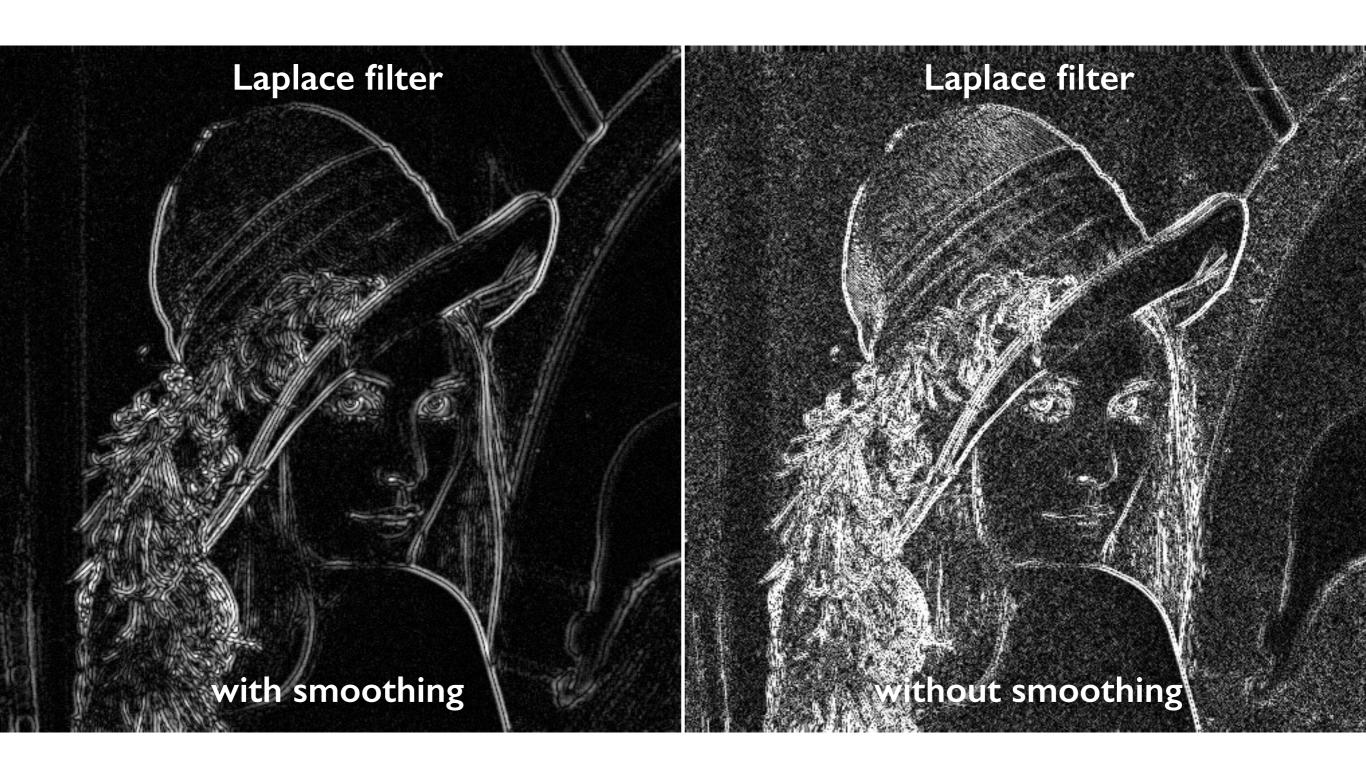
I -2 I

ID Laplace filter

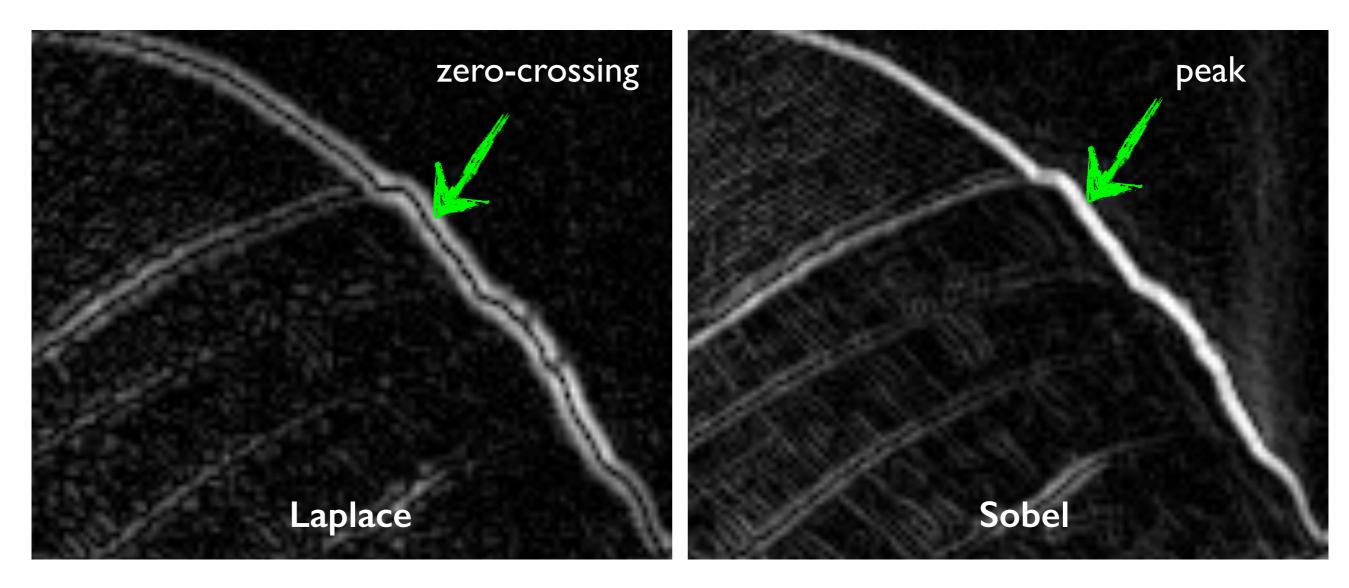
0	1 0		
ı	-4	I	
0	Ι	0	

2D Laplace filter

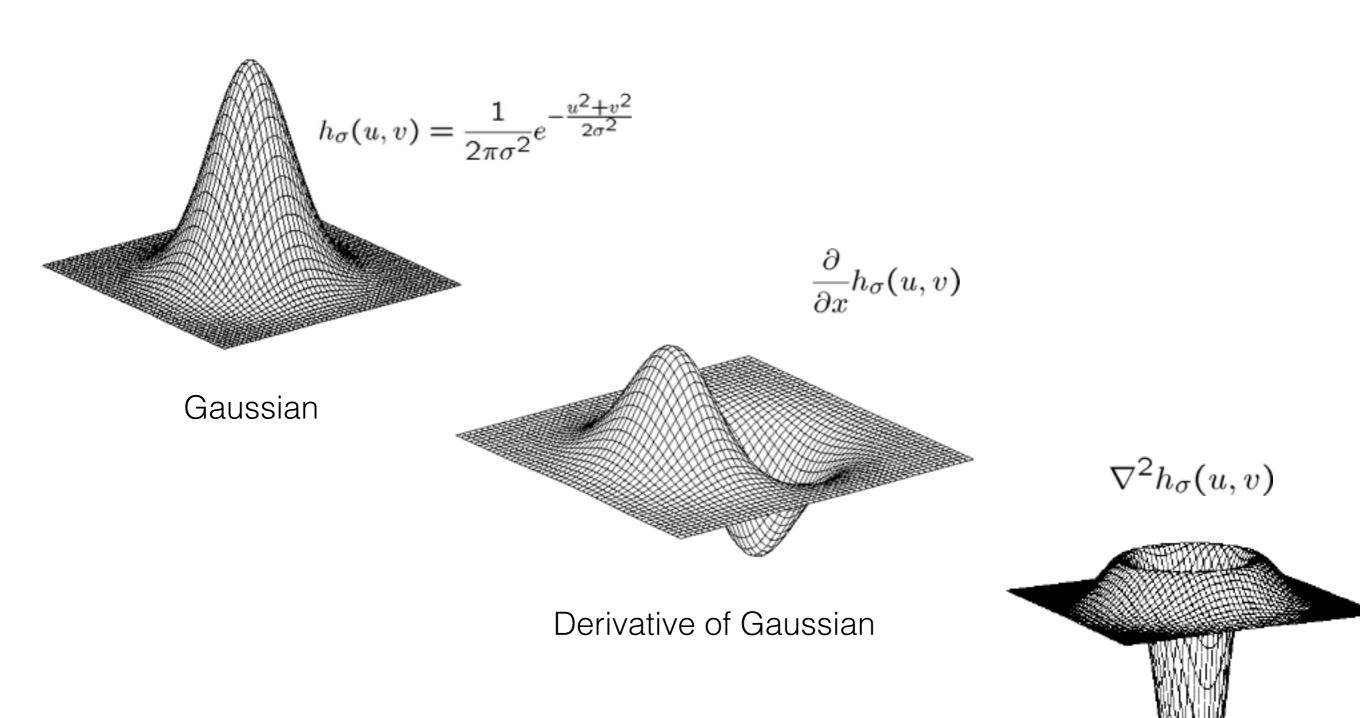
If the Sobel filter approximates the first derivative, the Laplace filter approximates?



What's different between the two results?



Zero crossings are more accurate at localizing edges (but not very convenient)



2D Gaussian Filters

Laplacian of Gaussian

16-385 Computer Vision

Filters we have learned so far ...

The 'Box' filter

1	I	I	I
9	I	I	I
J	I	I	I

Gaussian filter

Sobel filter

I	0	-1
2	0	-2
ı	0	-1

Laplace filter

0	1 0		
_	-4	I	
0	_	0	

filtering $h = g \otimes f$ (cross-correlation)

$$h = g \otimes f$$

output filter image
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 What's the difference?

convolution

$$h = g \star f$$

$$h[m, n] = \sum_{k,l} g[k, l] f[m - k, n - 1]$$

filtering
(cross-correlation)

$$h = g \otimes f$$

output filter image
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 filter flipped vertically and

convolution

$$h = g \star f$$

$$h[m, n] = \sum_{k,l} g[k, l] f[m - k, n - 1]$$

filtering
(cross-correlation)

$$h = g \otimes f$$

output filter image
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 filter flipped vertically and

convolution

$$h = g \star f$$

$$h[m, n] = \sum_{k,l} g[k, l] f[m - k, n - 1]$$

Suppose g is a Gaussian filter. How does convolution differ from filtering?

	Recall		
	I	2	I
<u> </u> 6	2	4	2
	I	2	Ī

Commutative

$$a \star b = b \star a$$
.

Associative

$$(((a \star b_1) \star b_2) \star b_3) = a \star (b_1 \star b_2 \star b_3)$$

Distributes over addition

$$a \star (b+c) = (a \star b) + (a \star c)$$

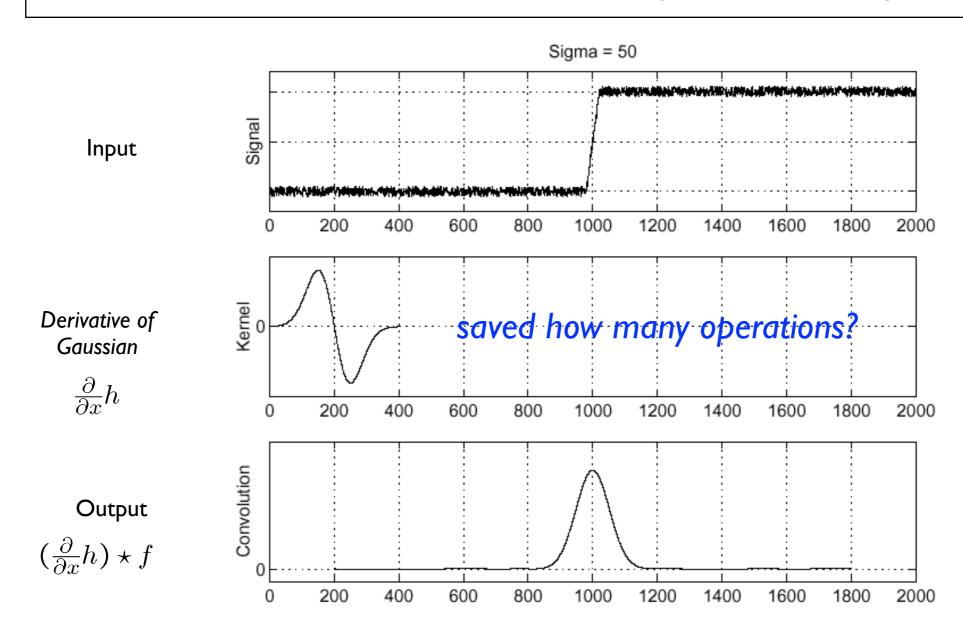
Scalars factor out

$$\lambda a \star b = a \star \lambda b = \lambda (a \star b)$$

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$



Recall ...

