

Mean-Shift Tracker

16-385 Computer Vision

A 'mode seeking' algorithm

A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

Find the region of highest density

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Pick a point

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Draw a window

A 'mode seeking' algorithm

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Shift the window

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Compute the mean

A 'mode seeking' algorithm Fukunaga & Hostetler (1975)

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

Kernel Density Estimation

Approximate the underlying PDF from samples

Put 'bump' on every sample to approximate the PDF

Kernel Density Estimation

Approximate the underlying PDF from samples from it

Put 'bump' on every sample to approximate the PDF

Kernel Function

$$K(\boldsymbol{x}, \boldsymbol{x}')$$

a 'distance' between two points

Epanechnikov kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = \begin{cases} c(1 - \|\boldsymbol{x} - \boldsymbol{x}'\|^2) & \|\boldsymbol{x} - \boldsymbol{x}'\|^2 \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = \begin{cases} c & \|\boldsymbol{x} - \boldsymbol{x}'\|^2 \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = c \exp\left(\frac{1}{2}\|\boldsymbol{x} - \boldsymbol{x}'\|^2\right)$$

Radially symmetric kernels

...can be written in terms of its profile

$$K(\boldsymbol{x}, \boldsymbol{x}') = c \cdot k(\|\boldsymbol{x} - \boldsymbol{x}'\|^2)$$
profile

Connecting KDE and the Mean Shift Algorithm

Consider a set of points:

$$\{\boldsymbol{x}_s\}_{s=1}^S$$

$$\{oldsymbol{x}_s\}_{s=1}^S \qquad oldsymbol{x}_s \in \mathcal{R}^d$$

Sample mean:

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s}) \boldsymbol{x}_{s}}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_{s})}$$

Mean shift:

$$m(\boldsymbol{x}) - \boldsymbol{x}$$

Mean shift algorithm

From each data point, move to its mean $x \leftarrow m(x)$ Iterate until $\boldsymbol{x} = m(\boldsymbol{x})$

Where does this algorithm come from?

Consider a set of points:

$$\{x_s\}_{s=1}^{S}$$

$$oldsymbol{x}_s \in \mathcal{R}^d$$

Sample mean:

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s)}$$

Mean shift:

$$m(\boldsymbol{x}) - \boldsymbol{x}$$

Mean shift algorithm

Where does this come from?

From each data point, move to its mean ${\boldsymbol x} \leftarrow m({\boldsymbol x})$ Iterate until ${\boldsymbol x} = m({\boldsymbol x})$

Where does this algorithm come from?

How is the KDE related to the mean shift algorithm?

Kernel density estimate

(radially symmetric kernels)

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Gradient of the PDF is related to the mean shift vector

$$\nabla P(\boldsymbol{x}) \propto m(\boldsymbol{x})$$

The mean shift is a 'step' in the direction of the gradient of the KDE

Derivation

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Gradient

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

expand derivative

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x} - \boldsymbol{x}_n) k'(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

change of notation (kernel-shadow pairs)

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x}_n - \boldsymbol{x}) g(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$
$$k'(\cdot) = -q(\cdot)$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x}_n - \boldsymbol{x}) g(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

multiply it out

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_{n} \mathbf{x}_{n} g(\|\mathbf{x} - \mathbf{x}_{n}\|^{2}) - \frac{1}{N} 2c \sum_{n} \mathbf{x} g(\|\mathbf{x} - \mathbf{x}_{n}\|^{2})$$

too long (enter short hand notation)

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

multiply by one!

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} \left(\frac{\sum_{n} g_{n}}{\sum_{n} g_{n}} \right) - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

collecting like terms...

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} g_n \left(\frac{\sum_{n} \boldsymbol{x}_n g_n}{\sum_{n} g_n} - \boldsymbol{x} \right)$$

Does this look familiar?

$$abla P(m{x}) = rac{1}{N} 2c \sum_n g_n \left(rac{\sum_n m{x}_n g_n}{\sum_n g_n} - m{x}
ight)$$
mean shift!

The mean shift is a 'step' in the direction of the gradient of the KDE

$$m(\boldsymbol{x}) = \left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}} - \boldsymbol{x}\right) = \frac{\nabla P(\boldsymbol{x})}{\frac{1}{N} 2c \sum_{n} g_{n}}$$

Gradient ascent with adaptive step size

Dealing with images

Pixels for a lattice, spatial density is the same everywhere!

What can we do?

Consider a set of points:
$$\{x_s\}_{s=1}^S$$

$$\{\boldsymbol{x}_s\}_{s=1}^{S}$$

$$oldsymbol{x}_s \in \mathcal{R}^d$$

Associated weights:

$$w(\boldsymbol{x}_s)$$

Sample mean:

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s)}$$

Mean shift:

$$m(\boldsymbol{x}) - \boldsymbol{x}$$

Mean shift algorithm

From each data point, move to its mean $\boldsymbol{x} \leftarrow m(\boldsymbol{x})$ Iterate until $\boldsymbol{x} = m(\boldsymbol{x})$

Finally... mean shift tracking in video

Goal: find the best candidate location in frame 2

Use the mean shift algorithm to find the best candidate location

Non-rigid object tracking

Compute a descriptor for the target

Target

Search for similar descriptor in neighborhood in next frame

Target Candidate

Compute a descriptor for the new target

Target

Search for similar descriptor in neighborhood in next frame

Target

Candidate

Modeling the target

M-dimensional target descriptor

$$\boldsymbol{q} = \{q_1, \dots, q_M\}$$

(centered at target center)

Normalization Kronecker delta function $q_m = C \sum_n k(\|\boldsymbol{x}_n\|^2) \delta[b(\boldsymbol{x}_n) - m]$ function of inverse distance (weight)

A normalized color histogram (weighted by distance)

Modeling the candidate

M-dimensional candidate descriptor

$$\boldsymbol{p}(\boldsymbol{y}) = \{p_1(\boldsymbol{y}), \dots, p_M(\boldsymbol{y})\}$$

(centered at location y)

$$p_m = C_h \sum_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m]$$
 bandwidth

Similarity between the target and candidate

Distance function

$$d(\boldsymbol{y}) = \sqrt{1 - \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]}$$

Bhattacharyya Coefficient

$$\rho(y) \equiv \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] = \sum_{m} \sqrt{p_m(\boldsymbol{y})q_u}$$

Just the Cosine distance between two unit vectors

$$\rho(\boldsymbol{y}) = \cos \theta \boldsymbol{y} = \frac{\boldsymbol{p}(\boldsymbol{y})^{\top} \boldsymbol{q}}{\|\boldsymbol{p}\| \|\boldsymbol{q}\|} = \sum_{m} \sqrt{p_{m}(\boldsymbol{y})q_{m}}$$

similarity over image

we want to find this peak

image

similarity over image

Objective function

$$\min_{m{y}} d(m{y})$$

same as

$$\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$$

Assuming a good initial guess

$$ho[oldsymbol{p}(oldsymbol{y}_0+oldsymbol{y}),oldsymbol{q}]$$

Linearize around the initial guess (Taylor series expansion)

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} p_m(\boldsymbol{y}) \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

function at specified value

derivative

Linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} p_m(\boldsymbol{y}) \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

$$p_m = C_h \sum_{m} k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \quad \text{Remember definition of this?}$$

Fully expanded

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

Moving terms around...

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \left[\frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0) q_m} + \left[\frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \right] \right]$$

Does not depend on unknown y

Weighted kernel density estimate

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m({m y}_0)}} \delta[b({m x}_n) - m]$$

Weight is bigger when $q_m > p_m(\boldsymbol{y}_0)$

OK, why are we doing all this math?

$$\max_{m{y}}
ho[m{p}(m{y}), m{q}]$$

$$\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m({m y}_0)}} \delta[b({m x}_n) - m]$$

$$\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown y

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m({m y}_0)}} \delta[b({m x}_n) - m]$$

$$\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$$

only need to maximize this!

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown y

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m({m y}_0)}} \delta[b({m x}_n) - m]$$

$$\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown y

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m({m y}_0)}} \delta[b({m x}_n) - m]$$

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

$$\left\| \frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \right\|$$

the sample of mean of this KDE is

$$\boldsymbol{y}_1 = \frac{\sum_n \boldsymbol{x}_n w_n g\left(\left\|\frac{\boldsymbol{y}_0 - \boldsymbol{x}_n}{h}\right\|^2\right)}{\sum_n w_n g\left(\left\|\frac{\boldsymbol{y}_0 - \boldsymbol{x}_n}{h}\right\|^2\right)} \quad \text{(this was derived earlier)}$$
 (new candidate location)

Mean Shift Tracking procedure

- 1. Initialize location y_0 Compute qCompute $p(y_0)$
- 2. Derive weights w_n
- 3. Shift to new candidate location (mean shift) $oldsymbol{y}_1$
- 4. Compute $p(y_1)$
- 5. If $\| \boldsymbol{y}_0 \boldsymbol{y}_1 \| < \epsilon$ return

 Otherwise $\boldsymbol{y}_0 \leftarrow \boldsymbol{y}_1$ and go back to 2

Compute a descriptor for the target

Target a

Search for similar descriptor in neighborhood in next frame

Target Candidate $\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}),\boldsymbol{q}]$

Compute a descriptor for the new target

Target

 \boldsymbol{q}

Search for similar descriptor in neighborhood in next frame

Target Candidate $\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]$

