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Mean Shift Algorithm
Fukunaga & Hostetler (1975)
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Kernel Density Estimation
Approximate the underlying PDF from samples

Put ‘bump’ on every sample to approximate the PDF

To understand the mean shift algorithm …



Kernel Density Estimation
Approximate the underlying PDF from samples from it

Put ‘bump’ on every sample to approximate the PDF

p(x) =
X

i

cie
� (x�xi)

2

2�2

Gaussian ‘bump’ aka ‘kernel’



K(x,x0)

Kernel Function

a ‘distance’ between two points



Epanechnikov kernel

Uniform kernel

Normal kernel
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Radially symmetric kernels



Radially symmetric kernels

K(x,x0) = c · k(kx� x

0k2)

profile

…can be written in terms of its profile



Connecting KDE and the 
Mean Shift Algorithm



From each data point, move to its mean x m(x)

Iterate until x = m(x)

Where does this algorithm come from?

Consider a set of points: {xs}Ss=1 xs 2 Rd

Sample mean: m(x) =

P
s K(x,xs)xsP
s K(x,xs)

Mean shift: m(x)� x

Mean shift algorithm



Consider a set of points: {xs}Ss=1 xs 2 Rd

Sample mean: m(x) =

P
s K(x,xs)xsP
s K(x,xs)

Mean shift: m(x)� x

Mean shift algorithm

From each data point, move to its mean x m(x)

Iterate until x = m(x)

Where does this algorithm come from?

Where does this 
come from?



Kernel density estimate  
(radially symmetric kernels)

P (x) =
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N
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Gradient of the PDF is related to the mean shift vector

How is the KDE related to the mean shift algorithm?

rP (x) / m(x)

The mean shift is a ‘step’ in the direction of the gradient of the KDE
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Gradient

expand derivative

change of notation 
(kernel-shadow pairs)

Derivation
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multiply it out

too long (enter short hand notation)
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multiply by one!

collecting like terms…

Does this look familiar?
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The mean shift is a ‘step’ in the direction of the gradient of the KDE

{

mean shift!

mean shift

Gradient ascent with adaptive step size



Dealing with images
Pixels for a lattice, spatial density is the same everywhere!

What can we do?



Consider a set of points: {xs}Ss=1 xs 2 Rd

Sample mean:

Mean shift: m(x)� x

Mean shift algorithm
From each data point, move to its mean x m(x)

Iterate until x = m(x)

Associated weights: w(xs)

m(x) =

P
s K(x,xs)w(xs)xsP
s K(x,xs)w(xs)



For images, each pixel is point with a weight
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For images, each pixel is point with a weight



For images, each pixel is point with a weight



Finally… mean shift tracking in video



Frame 1 Frame 2

‘target’

x

center coordinate 
of target

center coordinate 
of candidatey

Goal: find the best candidate location in frame 2

Use the mean shift algorithm  
to find the best candidate location

‘candidate’
there are many ‘candidates’ but only one ‘target’



Non-rigid object tracking



Target

Compute a descriptor for the target



Target Candidate

Search for similar descriptor in neighborhood in next frame



Target

Compute a descriptor for the new target



Target Candidate

Search for similar descriptor in neighborhood in next frame



How do we model the target and candidate regions?



Modeling the target

q = {q1, . . . , qM}
M-dimensional target descriptor

A normalized  
color histogram 

(weighted by distance)

Kronecker 
delta function

function of 
inverse distance 

(weight)

Normalization 
factor

(centered at target center)

qm = C
X
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k(kxnk2)�[b(xn)�m]



Modeling the candidate
M-dimensional candidate descriptor

p(y) = {p1(y), . . . , pM (y}
(centered at location y)
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Similarity between  
the target and candidate

Bhattacharyya Coefficient

Just the Cosine distance between two unit vectors
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Now we can compute the similarity between a target and 
multiple candidate regions



target

similarity over imageimage

⇢[p(y), q]p(y)

q



target

similarity over imageimage

we want to find this peak

⇢[p(y), q]p(y)

q



Objective function

Assuming a good initial guess
⇢[p(y0 + y), q]

Linearize around the initial guess (Taylor series expansion)

derivativefunction at specified value
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Remember 
definition of this?pm = Ch
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Linearized objective

Fully expanded
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Does not depend on unknown y Weighted kernel density estimate

qm > pm(y0)Weight is bigger when

Fully expanded linearized objective

Moving terms around…



OK, why are we doing all this math?



max

y
⇢[p(y), q]

We want to maximize this
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Fully expanded linearized objective

We want to maximize this
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Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this
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Fully expanded linearized objective

doesn’t depend on unknown y

We want to maximize this

only need to 
maximize this!
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Fully expanded linearized objective

doesn’t depend on unknown y

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

We want to maximize this
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(this was derived earlier)
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Mean Shift Tracking procedure
1. Initialize location  

Compute 
Compute  

2. Derive weights 

3. Shift to new candidate location (mean shift) 

4. Compute 

5. If                             return  
Otherwise                      and go back to 2

y0
q
p(y0)

wn

y1

p(y1)

ky0 � y1k < ✏
y0  y1



Target

Compute a descriptor for the target

q



Target Candidate

Search for similar descriptor in neighborhood in next frame
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Target

Compute a descriptor for the new target

q



Target Candidate

Search for similar descriptor in neighborhood in next frame

max

y
⇢[p(y), q]




