
KLT Tracker
16-385 Computer Vision



Feature-based tracking

How should we select features?

How should we track them from frame to frame?



An Iterative Image Registration Technique 
with an Application to Stereo Vision. 

(1981)

Lucas Kanade

Detection and Tracking of Feature Points. 
(1991)

Kanade Tomasi

Good Features to Track. 
(1994)

Tomasi Shi

Kanade-Lucas-Tomasi 
(KLT) Tracker

The original KLT algorithm



Method for aligning 
(tracking) an image patch

Kanade-Lucas-Tomasi

Method for choosing the 
best feature (image patch) 

for tracking

Lucas-Kanade Tomasi-Kanade
How should we select features?How should we track them from frame 

to frame?



What are good features for tracking?



What are good features for tracking?

Intuitively, we want to avoid smooth 
regions and edges. But is there a more 

is principled way to define good 
features?



Can be derived from the tracking algorithm

What are good features for tracking?



Can be derived from the tracking algorithm

What are good features for tracking?

‘A feature is good if it can be tracked well’



Recall the Lucas-Kanade image alignment method:
X

x

[I(W(x;p))� T (x)]2

X

x

[I(W(x;p+�p))� T (x)]2incremental update

error function (SSD)



Recall the Lucas-Kanade image alignment method:
X

x

[I(W(x;p))� T (x)]2

X

x

[I(W(x;p+�p))� T (x)]2incremental update

error function (SSD)

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2
linearize



Recall the Lucas-Kanade image alignment method:
X

x

[I(W(x;p))� T (x)]2

X

x

[I(W(x;p+�p))� T (x)]2incremental update

error function (SSD)

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2
linearize

H =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]

Gradient update



Recall the Lucas-Kanade image alignment method:
X

x

[I(W(x;p))� T (x)]2

X

x

[I(W(x;p+�p))� T (x)]2incremental update

error function (SSD)

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2
linearize

H =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]

Gradient update

Update p p+�p



Stability of gradient decent iterations depends on …

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]



Stability of gradient decent iterations depends on …

H =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]

Inverting the Hessian

When does the inversion fail?



Stability of gradient decent iterations depends on …

H =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]

Inverting the Hessian

When does the inversion fail?

H is singular. But what does that mean?



Above the noise level

�1 � 0

�2 � 0

Well-conditioned

both Eigenvalues are large

both Eigenvalues have similar magnitude



Concrete example: Consider translation model

W(x;p) =


x+ p1

y + p2

�
W

@p
=


1 0
0 1

�

H =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

=
X

x


1 0
0 1

� 
I
x

I
y

� ⇥
I
x

I
y

⇤  1 0
0 1

�

=

 P
x

I
x

I
x

P
x

I
y

I
xP

x

I
x

I
y

P
x

I
y

I
y

�

Hessian

How are the eigenvalues related to image content? 



interpreting eigenvalues

λ1

λ2

λ2 >> λ1

λ1 >> λ2
�1 ⇠ 0

�2 ⇠ 0

What kind of image patch 
does each region represent?



interpreting eigenvalues
horizontal 
edge

vertical 
edge

flat

corner

λ1

λ2

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2



interpreting eigenvalues
horizontal 
edge

vertical 
edge

flat

corner

λ1

λ2

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2



What are good features for tracking?



What are good features for tracking?

min(�1,�2) > �



KLT algorithm
1. Find corners satisfying 

2. For each corner compute displacement to next frame 
using the Lucas-Kanade method 

3. Store displacement of each corner, update corner position 

4. (optional) Add more corner points every M frames using 1 

5. Repeat 2 to 3 (4) 

6. Returns long trajectories for each corner point

min(�1,�2) > �



(Demo)


