



## Image Alignment

16-385 Computer Vision Carnegie Mellon University (Kris Kitani)





http://www.humansensing.cs.cmu.edu/intraface/







### How can I find



### in the image?



## Idea #1: Template Matching



Slow, combinatory, global solution

## Idea #2: Pyramid Template Matching







Faster, combinatory, locally optimal

### Idea #3: Model refinement

(when you have a good initial solution)



Fastest, locally optimal

### Some notation before we get into the math...

2D image transformation

$$\mathbf{W}(oldsymbol{x};oldsymbol{p})$$

2D image coordinate

$$oldsymbol{x} = \left[ egin{array}{c} x \ y \end{array} 
ight]$$

Parameters of the transformation

$$\mathbf{p} = \{p_1, \dots, p_N\}$$

Warped image

$$I(oldsymbol{x}') = I(\mathbf{W}(oldsymbol{x}; oldsymbol{p}))$$
Pixel value at a coordinate

**Translation** 

$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} x+p_1\\y+p_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & p_1\\0 & 1 & p_2 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$
transform coordinate

**Affine** 

$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} p_1x + p_2y + p_3 \\ p_4x + p_5y + p_6 \end{bmatrix}$$

$$= \begin{bmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
transform coordinate

can be written in matrix form when linear

 $\mathbf{W}(\boldsymbol{x};\boldsymbol{p})$  takes a \_\_\_\_\_ as input and returns a \_\_\_\_\_

 $\mathbf{W}(m{x};m{p})$  is a function of \_\_\_\_ variables

 $\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})$  returns a \_\_\_\_ of dimension \_\_\_ x \_\_\_

 $\boldsymbol{p} = \{p_1, \dots, p_N\}$  where N is \_\_\_\_\_ for an affine model

 $I(\mathbf{x}') = I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$  this warp changes pixel values?

## Image alignment

(problem definition)

$$\min_{m{p}} \sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) - T(m{x}) 
ight]^2$$
 warped image template image

Find the warp parameters **p** such that the SSD is minimized

## Find the warp parameters **p** such that the SSD is minimized



## Image alignment

(problem definition)

$$\min_{m{p}} \sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) - T(m{x}) \right]^2$$

Find the warp parameters **p** such that the SSD is minimized

How could you find a solution to this problem?

### This is a non-linear function of the parameters

(Function I is not a linear function of position)

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Hard to optimize

What can you do to make it easier to solve?

### This is a non-linear function of the parameters

(Function I is not a linear function of position)

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Hard to optimize

What can you do to make it easier to solve?

assume good initialization, linearized objective and update incrementally

(pretty strong assumption) --

If you have a good initial guess **p**...

$$\sum_{\mathbf{x}} \left[ I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

can be written as ...

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

(a small incremental adjustment) (this is what we are solving for now)

#### This is still a non-linear function

(Function I is not a linear function of change in position)

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

How can we linearize the function I for a really small perturbation of p?

Hint: T s approx

#### This is still a non-linear function

(Function I is not a linear function of change in position)

$$\sum_{\mathbf{r}} \left[ I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

How can we linearize the function I for a really small perturbation of p?

Taylor series approximation!

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Multivariable Taylor Series Expansion (First order approximation)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Linear approximation

$$\sum_{\boldsymbol{r}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Is this a linear function of the unknowns?

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Multivariable Taylor Series Expansion (First order approximation)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Linear approximation

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Now, the function is a linear function of the unknowns

$$\sum_{\boldsymbol{r}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

- $I(\cdot)$  is a function of \_\_\_\_ variables
- $oldsymbol{x}$  is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_
- ${f W}$  is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_
  - p is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_

$$\sum_{\boldsymbol{r}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

 $I(\cdot)$  is a function of \_\_\_\_ variables

TS approximation of  $I(\cdot)$  has \_\_\_\_\_ partial derivative terms

abla I is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_

 $\frac{\partial \mathbf{W}}{\partial \mathbf{n}}$  is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_

 $\Delta m{p}$  is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_

# The Jacobian $\frac{\partial \mathbf{v}}{\partial \mathbf{p}}$

(A matrix of partial derivatives)

$$oldsymbol{x} = \left[ egin{array}{c} x \ y \end{array} 
ight]$$

$$\mathbf{W} = \begin{bmatrix} W_x(x,y) \\ W_y(x,y) \end{bmatrix}$$

$$\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} = \begin{bmatrix} \frac{\partial W_x}{\partial p_1} & \frac{\partial W_x}{\partial p_2} & \dots & \frac{\partial W_x}{\partial p_N} \\ \frac{\partial W_y}{\partial p_1} & \frac{\partial W_y}{\partial p_2} & \dots & \frac{\partial W_y}{\partial p_N} \end{bmatrix}$$

Rate of change of the transformation

Affine transform

$$\mathbf{W}(\boldsymbol{x};\boldsymbol{p}) = \begin{bmatrix} p_1x + p_3y + p_5 \\ p_2x + p_4y + p_6 \end{bmatrix}$$

$$\frac{\partial W_x}{\partial p_1} = x \qquad \frac{\partial W_x}{\partial p_2} = 0 \qquad \cdots$$

$$\frac{\partial W_y}{\partial p_1} = 0 \qquad \cdots$$

$$\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} = \begin{bmatrix} x & 0 & y & 0 & 1 & 0 \\ 0 & x & 0 & y & 0 & 1 \end{bmatrix}$$

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

TS approximation of  $\boldsymbol{I}$  has \_\_\_\_\_ partial derivative terms

$$abla I$$
 is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_

$$\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$$
 is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_

$$\Delta oldsymbol{p}$$
 is a \_\_\_\_\_ of dimension \_\_\_ x \_\_\_

## Summary

#### Problem:

$$\min_{m{p}} \sum_{m{x}} \left[ I(\mathbf{W}(m{x};m{p})) - T(m{x}) \right]^2$$
warped image template image

Difficult non-linear optimization problem

#### Strategy:

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^{2}$$

Assume known approximate solution Solve for increment

$$\sum_{\bm{x}} \left[ I(\mathbf{W}(\bm{x};\bm{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \bm{p}} \Delta \bm{p} - T(\bm{x}) \right]^2 \qquad \text{Taylor series approximation Linearize}$$

then solve for  $\Delta oldsymbol{p}$ 

OK, so how do we solve this?

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

OK, so how do we solve this?

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

# Gauss-Newton gradient decent non-linear optimization!

Another way to look at it...

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

(moving terms around)

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \{ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \} \right]^{2}$$

constant

variable

constant

Have you seen this form of optimization problem before?

Another way to look at it...

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \{ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \} \right]^{2}$$

Looks like  $\mathbf{A}\mathbf{x}$  —  $\mathbf{b}$ 

How do you solve this?

#### Least squares approximation

$$\hat{x} = \operatorname*{arg\,min}_{x} ||Ax - b||^2 \quad \text{is solved by} \quad x = (A^\intercal A)^{-1} A^\intercal b$$

$$\min_{\Delta \boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - \{ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \} \right]^{2}$$

is minimized when

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right] \qquad_{x = (A^{\top}A)^{-1}A^{\top}b}$$

where 
$$H = \sum_{m{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial m{p}} \right]^{\top} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial m{p}} \right]^{}$$

#### Solve:

$$\min_{\boldsymbol{p}} \sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$
warped image template image

Difficult non-linear optimization problem

#### Strategy:

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

Assume known approximate solution Solve for increment

$$\sum_{\boldsymbol{x}} \left[ I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Taylor series approximation Linearize

#### **Solution:**

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

Solution to least squares approximation

$$H = \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]$$

Hessian

#### Lucas Kanade (Additive alignment)

- 1. Warp image  $I(\mathbf{W}(x; p))$
- 2. Compute error image  $[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p}))]^2$
- 3. Compute gradient  $\nabla I$
- 4. Evaluate Jacobian  $\frac{\partial \mathbf{W}}{\partial \boldsymbol{p}}$
- 5. Compute Hessian H

$$H = \sum_{m{x}} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]^{ op} \left[ 
abla I rac{\partial \mathbf{W}}{\partial m{p}} 
ight]$$

6. Compute 
$$\Delta p$$

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[ T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

7. Update parameters  $p \leftarrow p + \Delta p$