
Image Alignment
16-385 Computer Vision

Carnegie Mellon University (Kris Kitani)

Lucas Kanade

http://www.humansensing.cs.cmu.edu/intraface/

How can I find in the image?

Idea #1: Template Matching

Slow, combinatory, global solution

Idea #2: Pyramid Template Matching

Faster, combinatory, locally optimal

Idea #3: Model refinement

Fastest, locally optimal

(when you have a good initial solution)

Some notation before we get into the math…

W(x;p)
2D image transformation

x =


x

y

�

p = {p1, . . . , pN}

2D image coordinate

Parameters of the transformation

Translation

W(x;p) =


x+ p1

y + p2

�

=


1 0 p1

0 1 p2

�2

4
x

y

1

3

5

transform coordinate

Affine

Pixel value at a coordinate

I(x0) = I(W(x;p))

W(x;p) =


p1x+ p2y + p3

p4x+ p5y + p6

�

=


p1 p2 p3

p4 p5 p6

�2

4
x

y

1

3

5

transform coordinate

Warped image

can be written in matrix form when linear

W(x;p)

p = {p1, . . . , pN}

is a function of ____ variables

W(x;p) takes a ________ as input and returns a _______

W(x;p) returns a ______ of dimension ___ x ___

where N is _____ for an affine model

I(x0) = I(W(x;p)) this warp changes pixel values?

Image alignment
(problem definition)

min
p

X

x

[I(W(x;p))� T (x)]2

warped image template image

Find the warp parameters p such that
the SSD is minimized

T (x)

W(x;p)

I(x)

Find the warp parameters p such that
the SSD is minimized

Image alignment
(problem definition)

min
p

X

x

[I(W(x;p))� T (x)]2

warped image template image

Find the warp parameters p such that
the SSD is minimized

How could you find a solution to this problem?

min
p

X

x

[I(W(x;p))� T (x)]2

This is a non-linear function of the parameters
(Function I is not a linear function of position)

Hard to optimize

What can you do to make it easier to solve?

min
p

X

x

[I(W(x;p))� T (x)]2
(Function I is not a linear function of position)

Hard to optimize

What can you do to make it easier to solve?

assume good initialization,
linearized objective and update incrementally

This is a non-linear function of the parameters

If you have a good initial guess p…
X

x

[I(W(x;p))� T (x)]2

can be written as …X

x

[I(W(x;p+�p))� T (x)]2

(a small incremental adjustment)

(pretty strong assumption)

(this is what we are solving for now)

X

x

[I(W(x;p+�p))� T (x)]2

This is still a non-linear function
(Function I is not a linear function of change in position)

How can we linearize the function I for a really small perturbation of p?

Taylor series approximation!Hint:

X

x

[I(W(x;p+�p))� T (x)]2

This is still a non-linear function
(Function I is not a linear function of change in position)

How can we linearize the function I for a really small perturbation of p?

Taylor series approximation!

X

x

[I(W(x;p+�p))� T (x)]2

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2
Linear approximation

Multivariable Taylor Series Expansion
(First order approximation)

f(x, y) ⇡ f(a, b) + f

x

(a, b)(x� a)� f

y

(a, b)(y � b)

Is this a linear function of the unknowns?

X

x

[I(W(x;p+�p))� T (x)]2

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2
Linear approximation

Multivariable Taylor Series Expansion
(First order approximation)

f(x, y) ⇡ f(a, b) + f

x

(a, b)(x� a)� f

y

(a, b)(y � b)

Now, the function is a linear function of the unknowns

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

is a function of _____ variables

is a _________ of dimension ___ x ___

is a _________ of dimension ___ x ___

is a __________ of dimension ___ x ___

W
p

I(·)
x

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

is a _________ of dimension ___ x ___rI

@W

@p
is a _________ of dimension ___ x ___

�p is a _________ of dimension ___ x ___

TS approximation of has ________ partial derivative terms

is a function of _____ variablesI(·)

I(·)

(I haven’t explained this yet)

The Jacobian @W

@p

@W

@p
=

2

64

@W
x

@p1

@W
x

@p2
· · · @W

x

@p
N

@W
y

@p1

@W
y

@p2
· · · @W

y

@p
N

3

75

Affine transform

@W

@p
=


x 0 y 0 1 0
0 x 0 y 0 1

�

@W

x

@p1
= x

@Wy

@p1
= 0

@W
x

@p2
= 0 · · ·

· · ·

W(x;p) =


p1x+ p3y + p5

p2x+ p4y + p6

�

Rate of change of the transformation

(A matrix of partial derivatives)

x =


x

y

�

W =


W

x

(x, y)
W

y

(x, y)

�

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

is a _________ of dimension ___ x ___rI

@W

@p
is a _________ of dimension ___ x ___

�p is a _________ of dimension ___ x ___

TS approximation of I has ________ partial derivative terms

Summary

Solve for increment

min
p

X

x

[I(W(x;p))� T (x)]2

X

x

[I(W(x;p+�p))� T (x)]2

Taylor series approximation
Linearize

Difficult non-linear optimization problem

Assume known approximate solution

Strategy:

Problem:

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

then solve for �p

warped image template image

OK, so how do we solve this?

min
�p

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

OK, so how do we solve this?

Gauss-Newton gradient decent !
non-linear optimization!

min
�p

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

min
�p

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

min
�p

X

x


rI

@W

@p
�p� {T (x)� I(W(x;p))}

�2

Another way to look at it…

(moving terms around)

Have you seen this form of optimization problem before?

variableconstant constant

min
�p

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

min
�p

X

x


rI

@W

@p
�p� {T (x)� I(W(x;p))}

�2

Ax � b

Another way to look at it…

How do you solve this?

Looks like

Least squares approximation

x̂ = argmin
x

||Ax� b||2 is solved by
x = (A>

A)�1
A

>
b

min
�p

X

x


rI

@W

@p
�p� {T (x)� I(W(x;p))}

�2

is minimized when

where A>A

x = (A>
A)�1

A

>
b

H =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]

Solve for increment

min
p

X

x

[I(W(x;p))� T (x)]2

X

x

[I(W(x;p+�p))� T (x)]2

Taylor series approximation
Linearize

Difficult non-linear optimization problem

Assume known approximate solution

Strategy:

Solve:

X

x


I(W(x;p)) +rI

@W

@p
�p� T (x)

�2

warped image template image

Solution:
Solution to least squares

approximation

HessianH =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]

1. Warp image

2. Compute error image

3. Compute gradient

4. Evaluate Jacobian

5. Compute Hessian

6. Compute

7. Update parameters

[T (x)� I(W(x;p))]2

I(W(x;p))

@W

@p

rI

H

�p

p p+�p

Lucas Kanade (Additive alignment)

�p = H�1
X

x


rI

@W

@p

�>
[T (x)� I(W(x;p))]

H =
X

x


rI

@W

@p

�> 
rI

@W

@p

�

