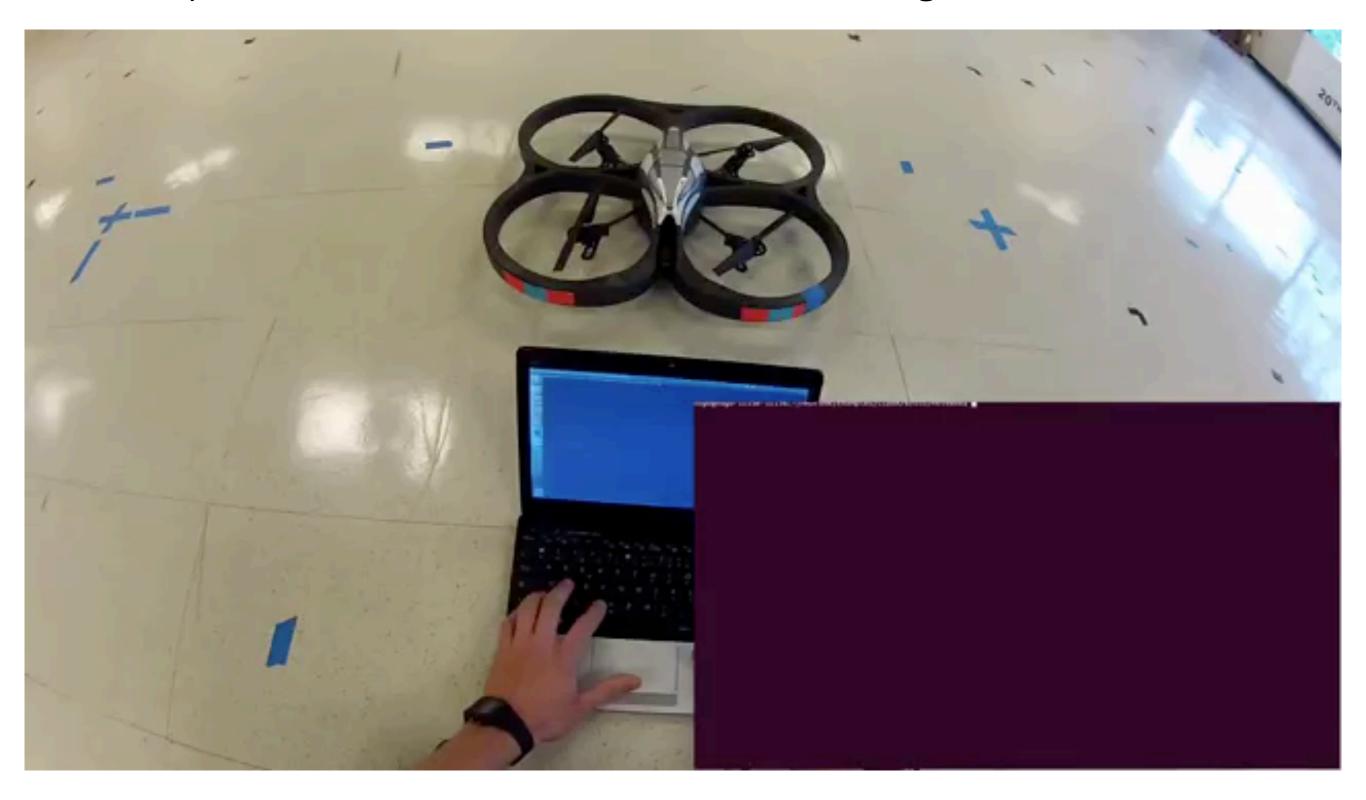


Video and Motion Analysis

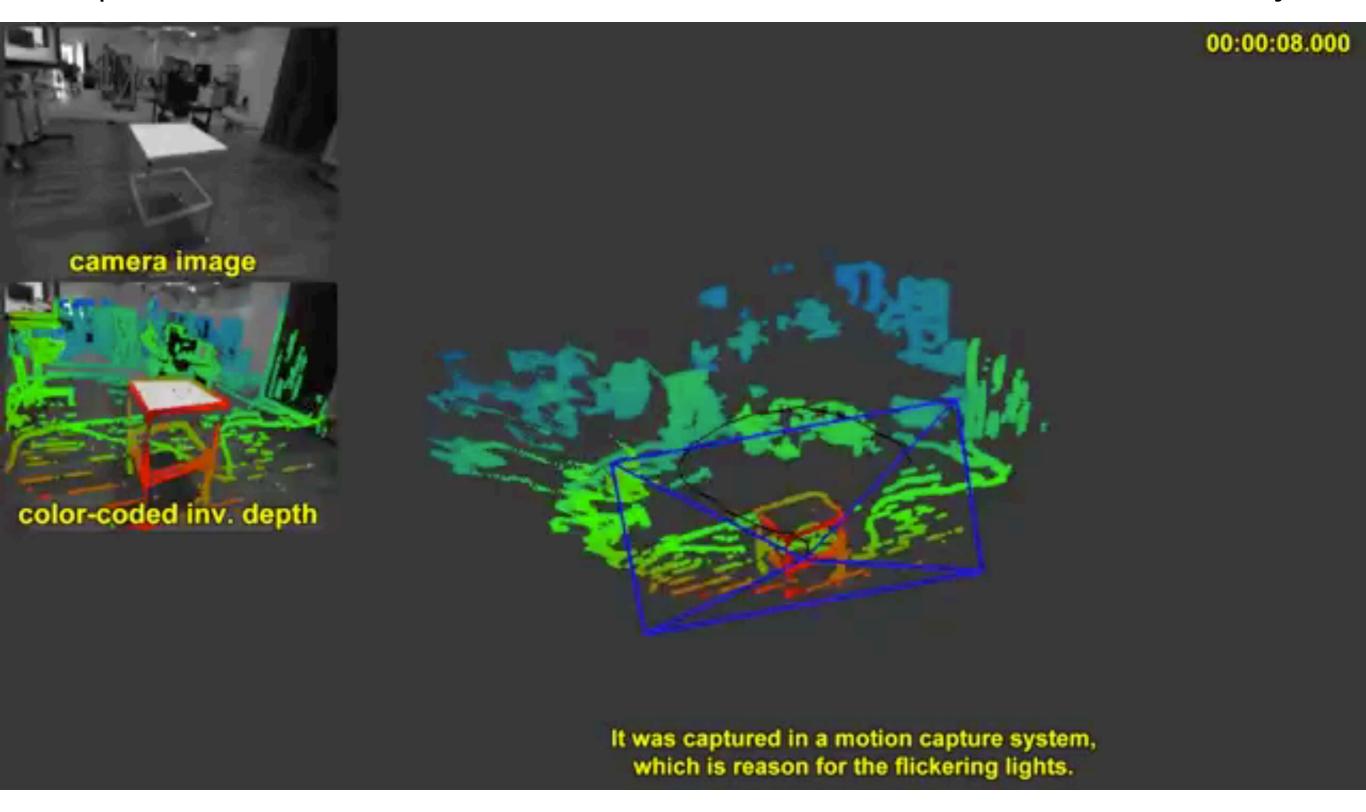
16-385 Computer Vision Carnegie Mellon University (Kris Kitani)

Optical flow used for feature tracking on a drone



Interpolated optical flow used for super slow-mo

optical flow used for motion estimation in visual odometry



Roadmap

(Where we have been and where we are going)

Image filtering

Frequency domain

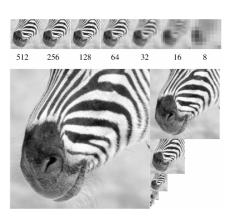


image pyramids

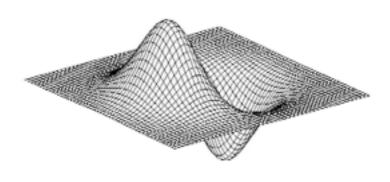
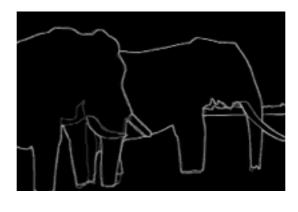
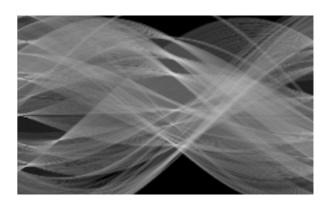


Image gradients



Boundaries

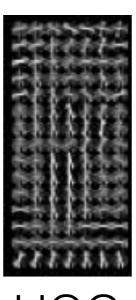


Hough Transform

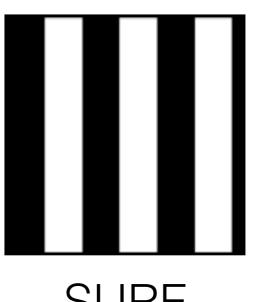
Image Manipulation (January)

Corner detection Multi-scale detection

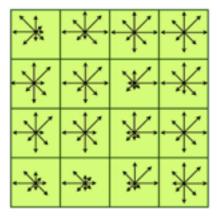
Haar-like



HOG



SURF

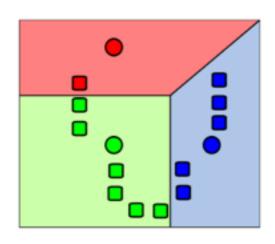


SIFT

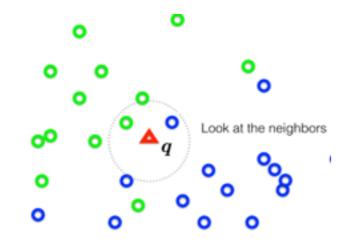
Image Features (February)



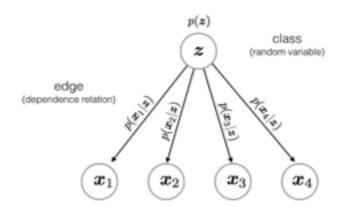
Bag-of-words



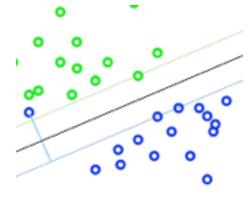
K-means



Nearest Neighbor



Naive Bayes



SVM

Object Recognition (February)

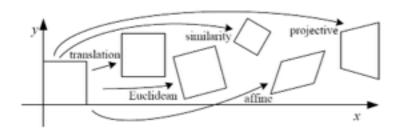
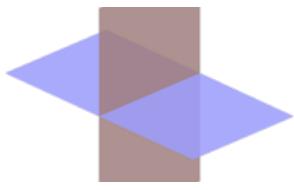


Figure 1: Basic set of 2D planar transformations

2D Transforms



DLT

RANSAC

2D Alignment (March)

x = PX

P

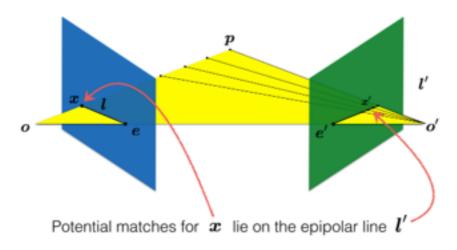
X

camera matrix

pose estimation

triangulation

H



fundamental matrix

epipolar geometry

Reconstruction

2 view geometry (March)

Block matching

Energy minimization

Stereo (March)

What you can do now

- Detect lines (circles, shapes) in an image
- Recognize objects using a bag-of-words model
- Automatic image warping and basic AR
- Reconstruct 3D scene structure from two images

What you will learn next

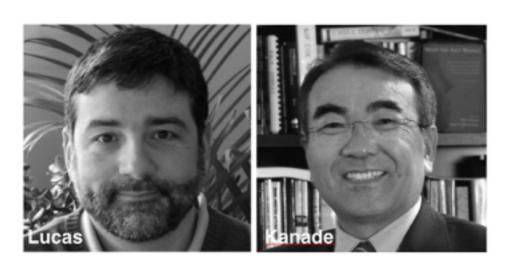
Object tracking in video

$$\begin{bmatrix} I_x(\boldsymbol{p}_1) & I_y(\boldsymbol{p}_1) \\ I_x(\boldsymbol{p}_2) & I_y(\boldsymbol{p}_2) \\ \vdots & \vdots \\ I_x(\boldsymbol{p}_{25}) & I_y(\boldsymbol{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\boldsymbol{p}_1) \\ I_t(\boldsymbol{p}_2) \\ \vdots \\ I_t(\boldsymbol{p}_{25}) \end{bmatrix}$$
$$\begin{aligned} \boldsymbol{min} \\ \boldsymbol{u,v} \sum_{ij} \left\{ E_d(i,j) + \lambda E_s(i,j) \right\} \end{aligned}$$

Constant Flow

Horn Schunck

Optical Flow (April)



Lucas Kanade (Forward additive)

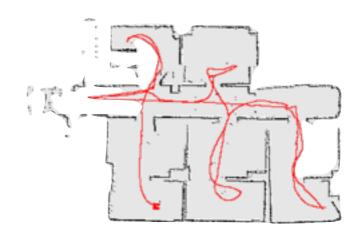
Baker Matthews (Inverse Compositional)

Image Alignment (April)

KLT

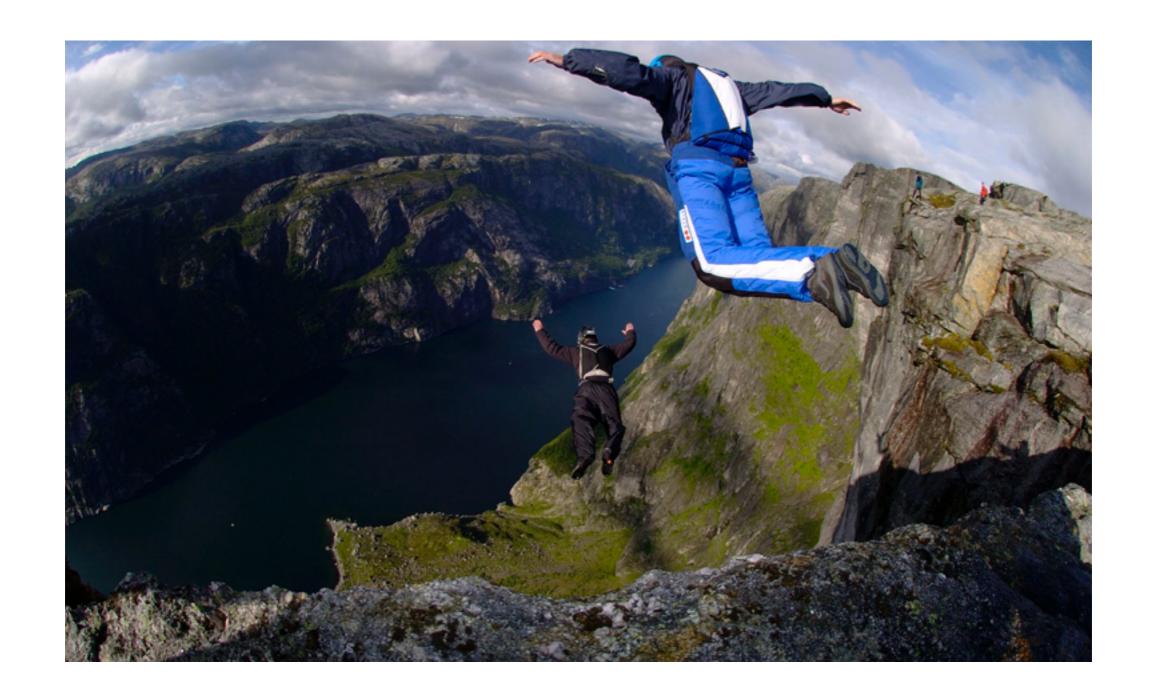
Mean shift

Kalman Filtering



SLAM

Tracking in Video (April-May)



Brightness Constancy

16-385 Computer Vision
Carnegie Mellon University (Kris Kitani)

Optical Flow

Problem Definition

Given two consecutive image frames, estimate the motion of each pixel

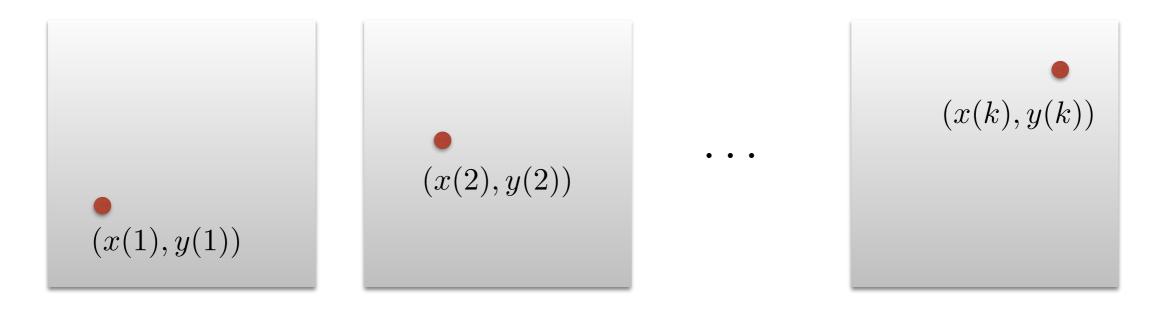
Assumptions

Brightness constancy

Small motion

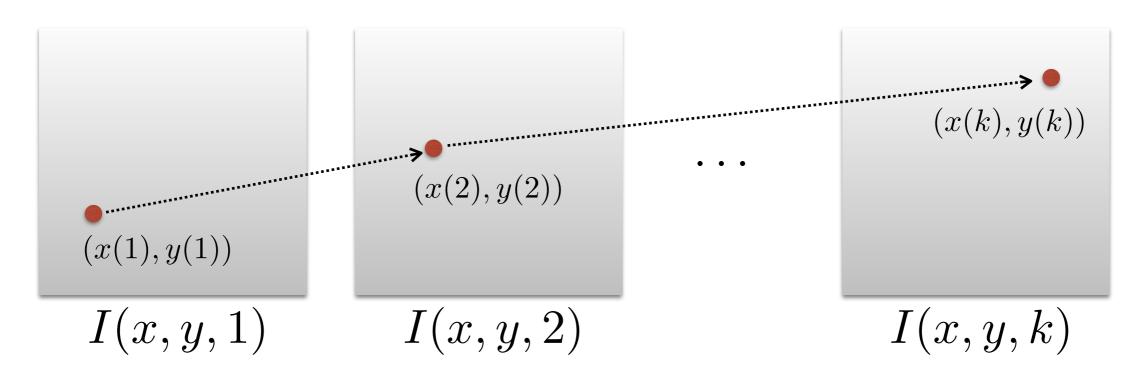
Brightness constancy

Scene point moving through image sequence



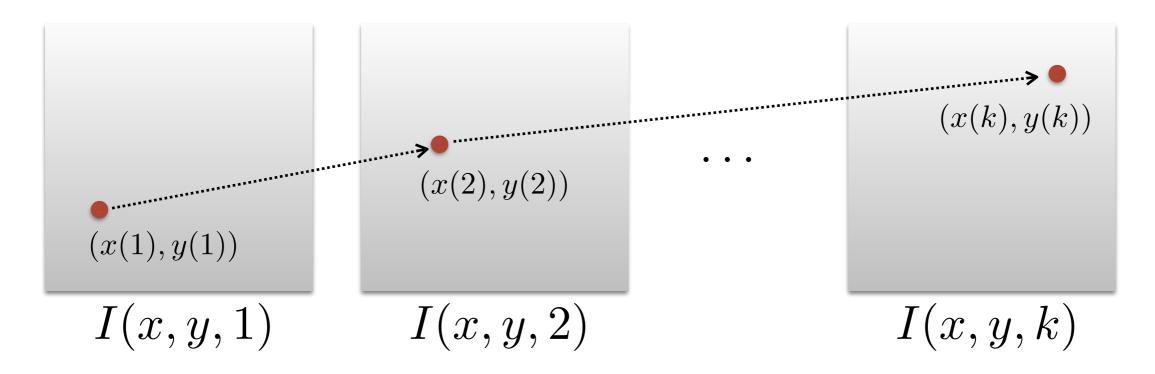
Brightness constancy

Scene point moving through image sequence



Brightness constancy

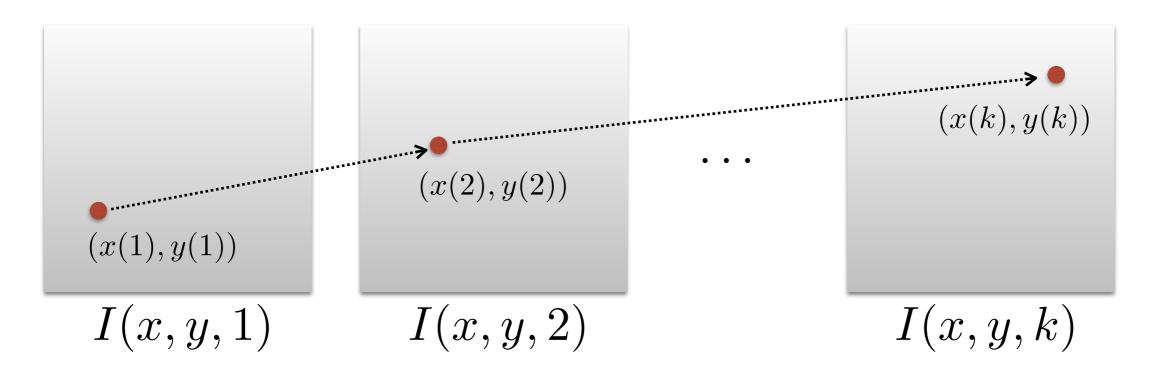
Scene point moving through image sequence



Assumption: Brightness of the point will remain the same

Brightness constancy

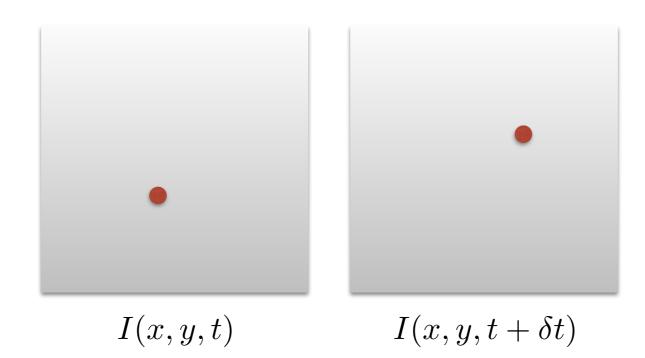
Scene point moving through image sequence



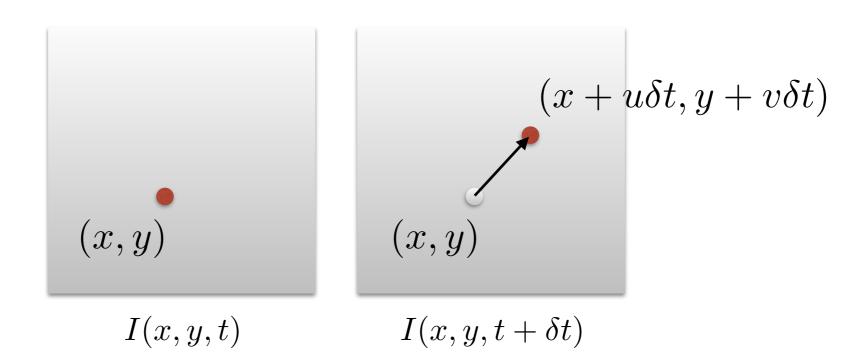
Assumption: Brightness of the point will remain the same

$$I(x(t), y(t), t) = C$$

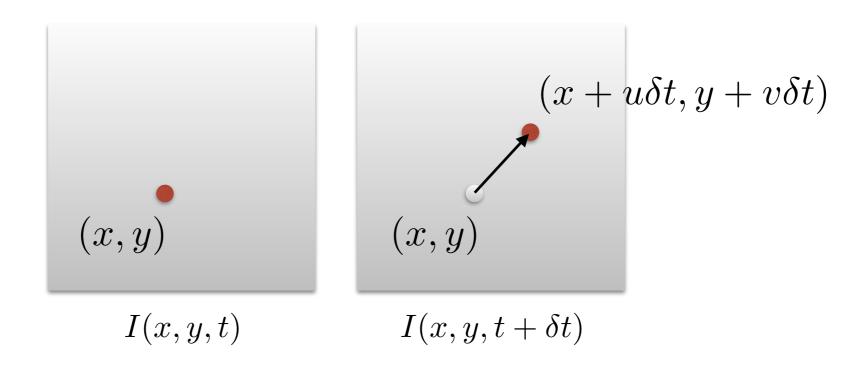
Small motion



Small motion

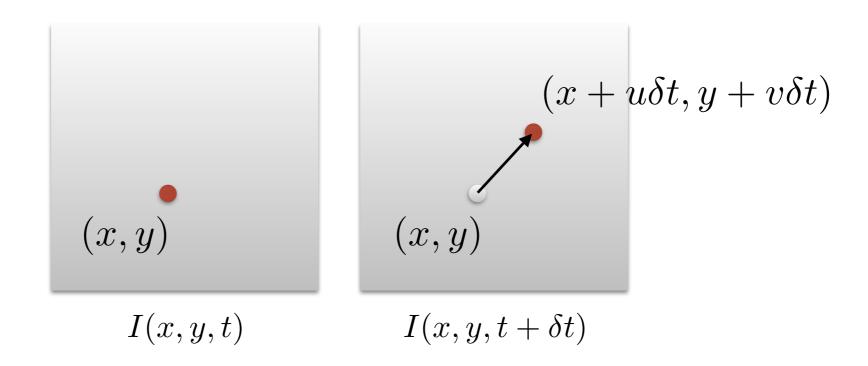


Small motion



Optical flow (velocities): (u,v) Displacement: $(\delta x,\delta y)=(u\delta t,v\delta t)$

Small motion



Optical flow (velocities): (u,v) Displacement: $(\delta x,\delta y)=(u\delta t,v\delta t)$

For a *really small space-time step*...

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

... the brightness between two consecutive image frames is the same

These assumptions yield the ...

Brightness Constancy Equation

$$\frac{dI}{dt} = \frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

total derivative partial derivative

Where does this come from?

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

For small space-time step, brightness of a point is the same

If the time step is really small, we can *linearize* the intensity function

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

(First order approximation, two variables)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

(First order approximation, two variables)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \text{assuming small motion}$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

(First order approximation, two variables)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \text{assuming small motion}$$

cancel terms

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

(First order approximation, two variables)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \text{assuming small motion}$$

$$\frac{\partial I}{\partial x}\delta x + \frac{\partial I}{\partial y}\delta y + \frac{\partial I}{\partial t}\delta t = 0 \qquad \text{cancel terms}$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

(First order approximation, two variables)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \text{assuming small motion}$$

$$\frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = 0 \quad \text{divide by } \delta t \\ \text{take limit } \delta t \to 0$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

(First order approximation, two variables)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \text{assuming small motion}$$

$$\frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = 0 \quad \text{divide by } \delta t$$
 take limit $\delta t \to 0$

take limit $\delta t \rightarrow 0$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

(First order approximation, two variables)

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) - f_y(a,b)(y-b)$$

$$I(x,y,t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t = I(x,y,t) \quad \text{assuming small motion}$$

$$\frac{\partial I}{\partial x}\delta x + \frac{\partial I}{\partial y}\delta y + \frac{\partial I}{\partial t}\delta t = 0 \qquad \qquad \text{divide by } \delta t \\ \text{take limit } \delta t \to 0$$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

Brightness Constancy Equation

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0 \qquad \begin{array}{l} \text{Brightness} \\ \text{Constancy Equation} \end{array}$$

$$I_x u + I_y v + I_t = 0$$

shorthand notation

$$\nabla I^{\top} \boldsymbol{v} + I_t = 0$$

vector form

What do the term of the brightness constancy equation represent?

$$I_x u + I_y v + I_t = 0$$

What do the term of the brightness constancy equation represent?

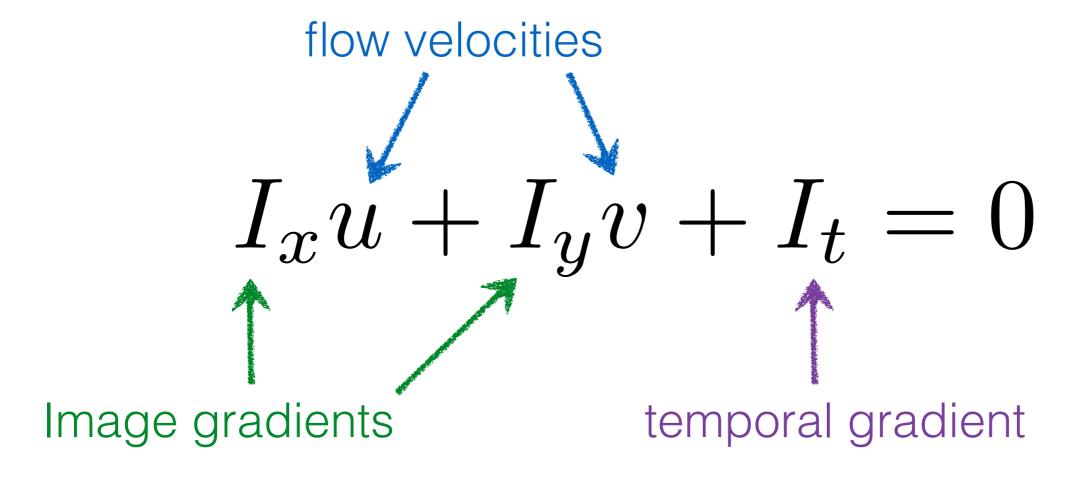
$$I_x u + I_y v + I_t = 0$$

$$1 \text{Image gradients}$$

What do the term of the brightness constancy equation represent?

Image gradients flow velocities $I_x u + I_y v + I_t = 0$

What do the term of the brightness constancy equation represent?



How do you compute these terms?

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

Forward difference Sobel filter Scharr filter

. . .

$$I_t = \frac{\partial I}{\partial t}$$

temporal derivative

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

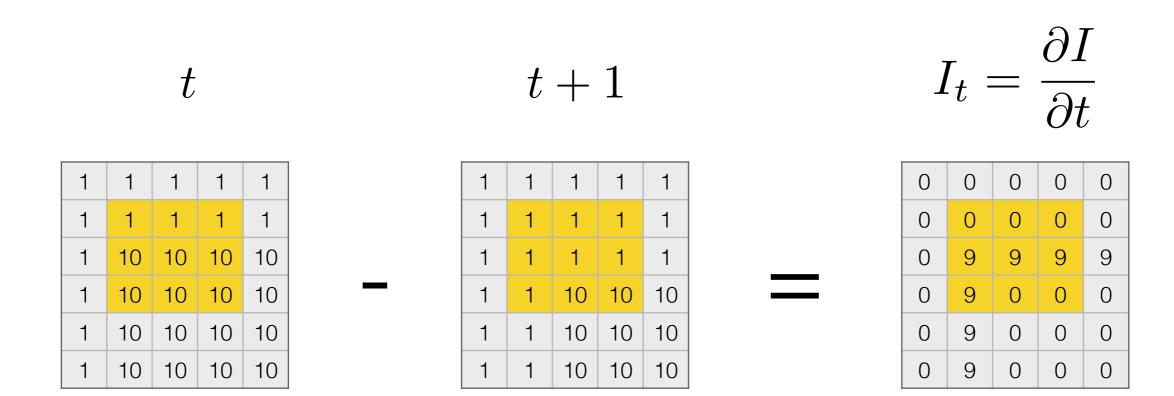
Forward difference
Sobel filter
Scharr filter

. . .

$$I_t = \frac{\partial I}{\partial t}$$

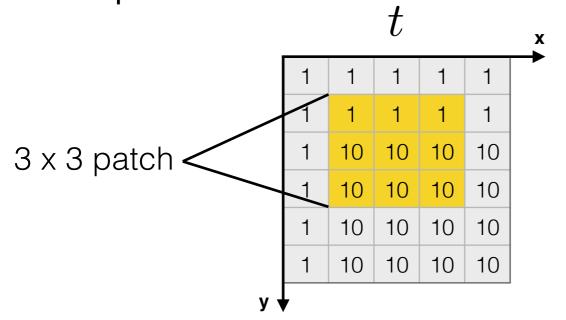
temporal derivative

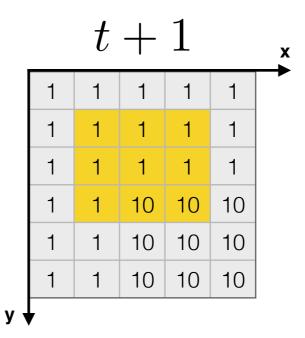
Frame differencing

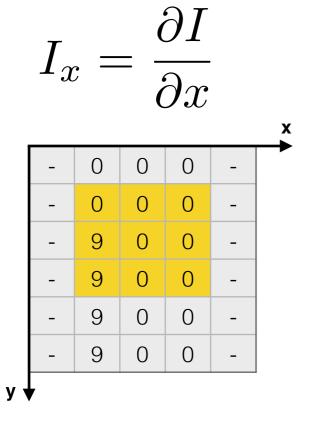


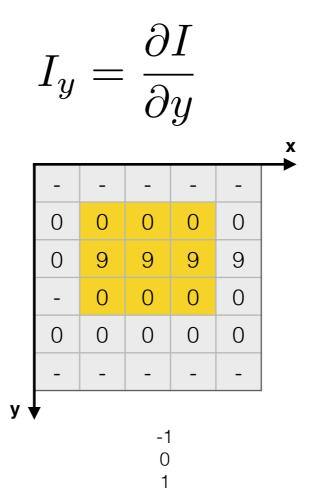
(example of a forward difference)

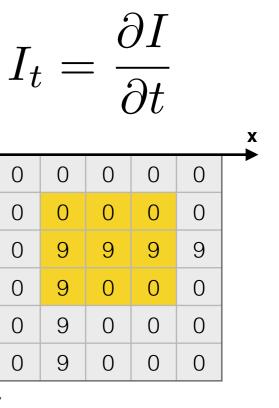
Example:











$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

 $u=rac{dx}{dt} \quad v=rac{dy}{dt}$ optical flow

$$I_t = \frac{\partial I}{\partial t}$$

temporal derivative

Forward difference
Sobel filter
Scharr filter

. . .

How do you compute this?

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

 $u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$ optical flow

 $I_t = \frac{\partial I}{\partial t}$ temporal derivative

Forward difference
Sobel filter
Scharr filter

. . .

We need to solve for this!

(this is the unknown in the optical flow problem)

$$I_x u + I_y v + I_t = 0$$

$$I_x = \frac{\partial I}{\partial x} \quad I_y = \frac{\partial I}{\partial y}$$

spatial derivative

Forward difference Sobel filter Scharr filter

. . .

 $u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$ optical flow

(u,v) Solution lies on a line

Cannot be found uniquely with a single constraint

$$I_t = \frac{\partial I}{\partial t}$$

temporal derivative

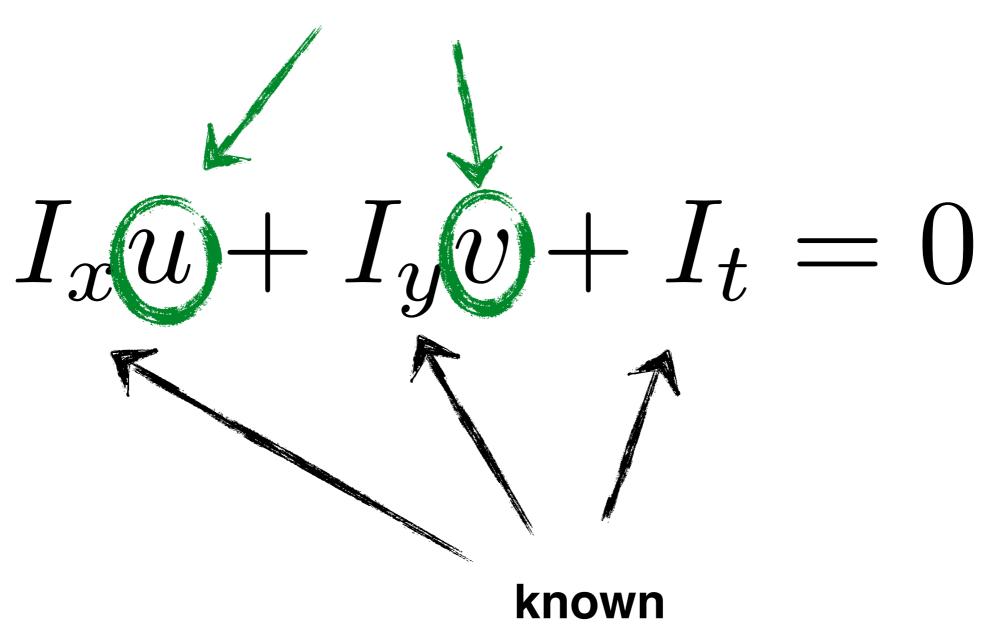
$$I_x u + I_y v + I_t = 0$$

$$I_x = rac{\partial I}{\partial x} \quad I_y = rac{\partial I}{\partial y}$$
 spatial derivative

$$u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$$
 optical flow

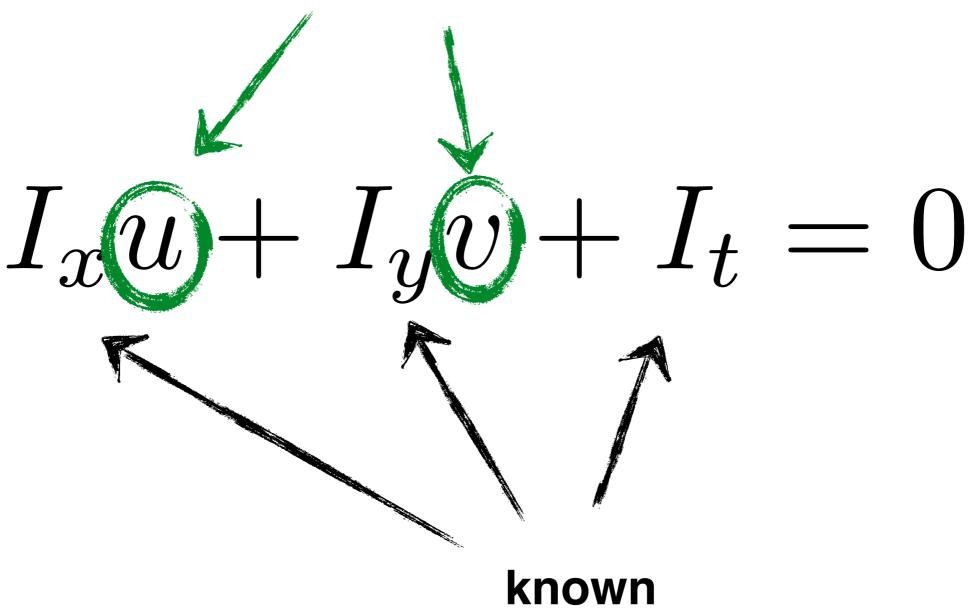
$$I_t = \frac{\partial I}{\partial t}$$
 temporal derivative

How can we use the brightness constancy equation to estimate the optical flow?



We need at least ____ equations to solve for 2 unknowns.

unknown



Where do we get more equations (constraints)?