

Image filtering

Frequency domain

image pyramids

Image gradients

Boundaries

Hough Transform

Image Manipulation

Corner detection Multi-scale detection

Haar-like

HOG

SURF

SIFT

Image Features

Bag-of-words

K-means

Nearest Neighbor

Naive Bayes

SVM

Object Recognition

Figure 1: Basic set of 2D planar transformations

2D Transforms

DLT

RANSAC

2D Alignment

x = PX

P

X

camera matrix

pose estimation

triangulation

H

Potential matches for $oldsymbol{x}$ lie on the epipolar line $oldsymbol{l}'$

fundamental matrix

epipolar geometry

Reconstruction

2 view geometry

Block matching

Energy minimization

Stereo

$$\begin{bmatrix} I_x(\boldsymbol{p}_1) & I_y(\boldsymbol{p}_1) \\ I_x(\boldsymbol{p}_2) & I_y(\boldsymbol{p}_2) \\ \vdots & \vdots \\ I_x(\boldsymbol{p}_{25}) & I_y(\boldsymbol{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\boldsymbol{p}_1) \\ I_t(\boldsymbol{p}_2) \\ \vdots \\ I_t(\boldsymbol{p}_{25}) \end{bmatrix} \qquad \qquad \mathbf{min} \\ \boldsymbol{u}, \boldsymbol{v} \sum_{ij} \left\{ E_d(i,j) + \lambda E_s(i,j) \right\}$$

Constant Flow

Horn Schunck

Optical Flow

Lucas Kanade (Forward additive)

Baker Matthews (Inverse Compositional)

Image Alignment

KLT

Mean shift

Tracking

Image Filtering

16-385 Computer Vision

color image patch

actual intensity values per channel (quantized to 256 values)

how many bits?

What kind of image transformations can we perform?

Filtering Warping

changes the pixel values

changes the pixel location

An image as a 2D function

$$f(x)$$
 $x = \begin{bmatrix} x \\ y \end{bmatrix}$

An image as a 2D function

What is the range of $f(oldsymbol{x})$?

$$f(x)$$
 $x = \begin{bmatrix} x \\ y \end{bmatrix}$

An image as a 2D function

f(x)

 $oldsymbol{x} = \left| egin{array}{c} x \ y \end{array} \right|$

What is the range of $f(m{x})$?

8-bit image: 256 values

What kind of image transformations can we perform?

Filtering

$$G(\boldsymbol{x}) = h\{F(\boldsymbol{x})\}$$

changes the **range** of image

Warping

$$G(\boldsymbol{x}) = F(h\{\boldsymbol{x}\})$$

changes the **domain** of image

What kind of image filtering can we perform?

Point Operation

point processing

Neighborhood Operation

filtering

Examples of Point Processing

Darken

Lower Contrast

Nonlinear Lower Contrast

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

Examples of filtering

Original

Median

Adaptive Thresholding

Bilateral

Point Processing

16-385 Computer Vision

What kind of image filtering can we perform?

Point Operation

point processing

Neighborhood Operation

filtering

Original

Darken

Lower Contrast

Nonlinear Lower Contrast

x pixel value

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

Original

Lower Contrast

Nonlinear Lower Contrast

 \mathcal{X}

x-128 how would you code this?

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

Lower Contrast

Nonlinear Lower Contrast

 \mathcal{X}

x - 128

 $\frac{x}{2}$

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

Nonlinear Lower Contrast

 \mathcal{X}

x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

Lower Contrast

Nonlinear Lower Contrast

 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

Lower Contrast

Nonlinear Lower Contrast

 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

255 - x

x + 128

Lower Contrast

Nonlinear Lower Contrast

 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

Invert

Lighten

Raise Contrast

Nonlinear Raise Contrast

$$255 - x$$

$$x + 128$$

$$x \times 2$$

Original x

Darken

Lower Contrast

Nonlinear Lower

Contrast

$$x - 128$$

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

Nonlinear Raise

$$255 - x$$

x + 128

 $x \times 2$

$$\left(\frac{x}{255}\right)^2 \times 255$$

Other point processes

Box Filter

The 'Box' filter

$$g[\cdot,\cdot] = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

replaces pixel with local average has a smoothing effect

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

 $h[\cdot,\cdot]$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

 $h[\cdot,\cdot]$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

outp	output $h[\cdot,\cdot]$									
	0									

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

outp	output									
	0	10								

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot,\cdot]$$
filter
$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

outp	output									
	0	10	20	30						

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

output									
	0	10	20	30	30				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline & 1 & 1 & 1 \\\hline \end{array}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot,\cdot]$$
filter
$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline & 1 & 1 & 1 \\\hline \end{array}$$

ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

output										
	0	10	20	30	30	30	20	10		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

Output										
	0	10	20	30	30	30	20	10		
	0									

OUTDUT

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$												
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hamiltonian}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$												
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hamiltonian}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$											
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hamiltonian}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot,\cdot]$$
filter
$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$											
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

outp	output											
	0	10	20	30	30	30	20	10				
	0	20	40	60	60	60	40	20				
	0	30	50	80	80	90	60	30				
	0	30	50	80	80	90	60	30				
	0	20	30	50	50	60	40	20				
	0	10	20	30	30	30	20	10				
	10	10	10	10	0	0	0	0				
	10	10	10	10	0	0	0	0				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

$$g[\cdot, \cdot]$$
filter
$$\frac{1}{9} \begin{array}{|c|c|c|}\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline 1 & 1 & 1 \\\hline \end{array}$$

ima	image $f[\cdot,\cdot]$												
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

outp	out								
	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10	10	10	10	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:hammer}$$
 output
$$k,l \quad \text{filter} \quad \text{image (signal)}$$

^{*} some zero values are white for visualization but they should be black

Gaussian Filter

The Gaussian filter

 $\begin{array}{c|cccc}
 & I & 2 & I \\
 & 2 & 4 & 2 \\
 & I & 2 & I \\
\end{array}$

A Gaussian kernel gives less weight to pixels further from the center of the window

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

This kernel is an approximation of a Gaussian function

Gaussian filtering versus mean filtering

How would you create a shadow effect?

How would you create a shadow effect?

How would you create a soft focus effect?

How would you create a soft focus effect?

Tilt Shift Effect

http://www.flickr.com/photos/ender079/2704450659/

How would you create a (super low-budget) tilt-shift effect?

http://farm8.staticflickr.com/7061/6867631897_f8377709b9_z.jpg

How would you create a (super low-budget) tilt-shift effect?

Tell me everything wrong with this wannabe tilt-shift image

Fourier's Claim

It all starts with this guy...

Who is this fellow?

Jean Baptiste Joseph Fourier (1768-1830)

Jean Baptiste Joseph Fourier (1768-1830)

What was his claim?

Jean Baptiste Joseph Fourier (1768-1830)

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies' (1807)

Jean Baptiste Joseph Fourier (1768-1830)

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies' (1807)

Laplace

Lagrange

Legendre

Poisson

What did these guys think of his claims?

Jean Baptiste Joseph Fourier (1768-1830)

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies'
(1807)

Laplace

Lagrange

Legendre

Poisson

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

- Laplace

Not translated to English until 1878!

Jean Baptiste Joseph Fourier (1768-1830)

'Any univariate function can be rewritten as a weighted sum of sines and cosines of different frequencies'
(1807)

Laplace

Lagrange

Legendre

Poisson

1

Why is he so angry?

1820 watercolor caricatures of French mathematicians Adrien-Marie Legendre (left) and Joseph Fourier (right) by French artist Julien-Leopold Boilly, watercolor portrait numbers 29 and 30 of Album de 73 Portraits-Charge Aquarelle's des Membres de l'Institute.

http://en.wikipedia.org/wiki/Joseph_Fourier

Basic building block

CLAIM:

Add enough of them to get any signal you want!

$$f(x) = \sin(2\pi x) + \frac{1}{3}\sin(2\pi 3x)$$

How would you express this mathematically?

$$\sum_{k=1}^{\infty}$$

$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

A square wave is an infinite sum of sine waves

How would could you visualize this in the frequency domain?

$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

A square wave is an infinite sum of sine waves

Why does this matter?

Spatial domain filtering

Frequency domain filtering

Frequency Spectrum

$$f(x) = \sin(2\pi kx) + \frac{1}{3}\sin(2\pi 3kx)$$

$$f(x) = \sin(2\pi kx) + \frac{1}{3}\sin(2\pi 3kx)$$

$$f(x) = \sin(2\pi kx) + \frac{1}{3}\sin(2\pi 3kx)$$

Recall the temporal domain visualization

$$f(x) = \sin(2\pi kx) + \frac{1}{3}\sin(2\pi 3kx)$$

not visualizing the symmetric negative part

(zero for a sine wave with no offset)

Need to understand this to understand the 2D version...

Spatial domain visualization

Frequency domain visualization

?

2D

ID

Spatial domain visualization

Frequency domain visualization

2D

ID

Intensity in the spatial domain

Amplitude in the frequency domain

http://cns-alumni.bu.edu/~slehar/fourier/fourier.html

How would you generate this image with sine waves?

Has both an x and y component

spatial domain visualization

frequency domain visualization

spatial domain visualization

frequency domain visualization

Need to be able to interpret 2D spectra to understand frequency filtering ...

Fourier Transform

16-385 Computer Vision

Complex numbers have two parts:

rectangular coordinates

$$R + jI$$

what's this? what's this?

Complex numbers have two parts:

rectangular coordinates

$$R + jI$$

real imaginary

Complex numbers have two parts:

rectangular coordinates

$$R + jI_{_{\rm real}}$$

Complex numbers have two parts:

rectangular coordinates

$$R+jI_{_{\rm real}}$$

Polar

Complex numbers have two parts:

rectangular coordinates

$$R+jI$$

Alternative re-parameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

How do you compute r and theta?

Complex numbers have two parts:

rectangular coordinates

$$R + jI$$

real imaginary

Alternative re-parameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

polar transform

$$\theta = \tan^{-1}(\frac{I}{R}) \qquad r = \sqrt{R^2 + I^2}$$

Complex numbers have two parts:

rectangular coordinates

$$R + jI$$

real imaginary

Alternative re-parameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

polar transform

$$\theta = \tan^{-1}(\frac{I}{R}) \qquad r = \sqrt{R^2 + I^2}$$

How do you write this in exponential form?

Complex numbers have two parts:

rectangular coordinates

$$R+jI$$

1152° 11

Alternative re-parameterization:

polar coordinates

$$r(\cos\theta + j\sin\theta)$$

polar transform

$$\theta = \tan^{-1}(\frac{I}{R}) \qquad r = \sqrt{R^2 + I^2}$$

 $\bigcirc R$

exponential form

$$re^{j\theta}$$

'Euler's formula'

$$e^{j\theta} = \cos\theta + j\sin\theta$$

This will help us understanding of the Fourier transform equations ...

Fourier transform

Inverse Fourier transform

$$F(k) = \int_{-\infty}^{-\infty} f(x)e^{-j2\pi kx}dx \qquad f(x) = \int_{-\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

$$F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x)e^{-j2\pi kx/N}$$

$$f(x) = \sum_{k=0}^{N-1} F(k)e^{j2\pi kx/N}$$

$$k = 0, 1, 2, \dots, N-1$$

$$x = 0, 1, 2, \dots, N-1$$

Where is the connection to the 'summation of sine waves' idea?

Fourier transform

Inverse Fourier transform

$$F(k) = \int_{-\infty}^{-\infty} f(x)e^{-j2\pi kx}dx \qquad f(x) = \int_{-\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

$$F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x)e^{-j2\pi kx/N}$$

$$f(x) = \sum_{k=0}^{N-1} F(k)e^{j2\pi kx/N}$$

$$k = 0, 1, 2, \dots, N-1$$

$$x = 0, 1, 2, \dots, N-1$$

Where is the connection to the 'summation of sine waves' idea?

Where is the connection to the 'summation of sine waves' idea?

frequencies

$$f(x) = \sum_{k=0}^{N-1} F(k) e^{j2\pi kx/N}$$

$$Euler's formula'$$

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$f(x) = \sum_{k=0}^{N-1} F(k) \bigg\{ \cos(2\pi kx) + j\sin(2\pi kx) \bigg\}$$

wave components

"So how do you actually compute the DFT?"

-A. Student

Computing the Discrete Fourier Transform...

$$F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x)e^{-j2\pi kx/N}$$

...is just a matrix multiplication.

$$F = Wf$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$W = e^{-j2\pi/N} \qquad W = W^{2N}$$

Example

input signal

$$\begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 8 \\ 0 \end{bmatrix}$$

DFT

$$F(k) = \sum_{x=0}^{3} f(x)e^{-j2\pi xk/4}$$
$$= \sum_{x=0}^{3} f(x)(-j)^{xk}$$

Frequency Domain representation

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{bmatrix} = \begin{bmatrix} 20 \\ -j4 \\ 12 \\ j4 \end{bmatrix}$$

Frequency spectrum

The Convolution Theorem

 The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$\mathcal{F}\{g \star h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

 The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} \star \mathcal{F}^{-1}\{h\}$$

 Convolution in spatial domain is equivalent to multiplication in frequency domain!