
Reconstruction
16-385 Computer Vision

Carnegie Mellon University (Kris Kitani)

Structure!
(scene geometry)

Motion!
 (c Measurements

Pose Estimation known estimate 3D to 2D
correspondences

Triangulation estimate known 2D to 2D
coorespondences

Reconstruction estimate estimate 2D to 2D
coorespondences

Given a set of matched points

{xi,x
0
i}

Estimate the camera matrices

Estimate the 3D point
P,P0

X

Reconstruction!
(2 view structure from motion)

Procedure for Reconstruction
1. Compute the Fundamental Matrix F from points

correspondences  
8-point algorithm

x

0>
mFxm = 0

Procedure for Reconstruction
1. Compute the Fundamental Matrix F from points

correspondences  
8-point algorithm

2. Compute the camera matrices P from the Fundamental
matrix 
P = [I | 0] and P’ = [[e’x]F | e’]

Camera matrices corresponding to the
fundamental matrix F may be chosen as

P = [I|0] P0 = [[e⇥]F|e0]
(See Hartley and Zisserman C.9 for proof)

Decomposing F into R and T
If we have calibrated cameras we have andK K0

E = K0>FKEssential matrix:

Decomposing F into R and T
If we have calibrated cameras we have andK K0

E = K0>FKEssential matrix:

E = U⌃V>SVD: Let W =

2

4
0 �1 0
1 0 0
0 0 1

3

5

Decomposing F into R and T
If we have calibrated cameras we have andK K0

E = K0>FKEssential matrix:

E = U⌃V>SVD: Let W =

2

4
0 �1 0
1 0 0
0 0 1

3

5

We get FOUR solutions:

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

E = [R|T]
R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

two possible rotations two possible translations

We get FOUR solutions:

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

R1 = UWV>

R2 = UW>V>

T1 = U3

T2 = �U3

Compute determinant of R, valid solution must be equal to 1
(note: det(R) = -1 means rotation and reflection)

Compute 3D point using triangulation, valid solution has positive Z value
(Note: negative Z means point is behind the camera)

Which one do we choose?

camera center

image plane

op
tic

al
 a

xis

Camera Icon

Find the configuration where the points is in front of both cameras

Let’s visualize the four configurations…

Find the configuration where the points is in front of both cameras

1. Normalize the image points x,x’ using K,K’

2. Use the 8-point algorithm to find an
approximation of E (SVD!)

3. Project E to essential space (SVD!!)

4. Recover possible solutions for R and T
(SVD!!!)

5. Use point correspondence to find the
correct R,T pair (don’t use SVD…)

From points correspondences to camera displacement

Procedure for Reconstruction
1. Compute the Fundamental Matrix F from points

correspondences  
8-point algorithm

2. Compute the camera matrices P from the Fundamental
matrix 
P = [I | 0] and P’ = [[e’x]F | e’]

3. For each point correspondence, compute the point X
in 3D space (triangularization) 
DLT with x = P X and x’ = P’ X

Projective Ambiguity

• Reconstruction is ambiguous by an arbitrary 3D
projective transformation without prior knowledge
of camera parameters

Similarity

Projective

Calibrated cameras!
(similarity projection ambiguity)

Uncalibrated cameras!
(projective projection ambiguity)

Structure!
(scene geometry)

Motion!
 (c Measurements

Pose Estimation known estimate 3D to 2D
correspondences

Triangulation estimate known 2D to 2D
coorespondences

Reconstruction estimate estimate 2D to 2D
coorespondences

Stereo Vision
16-385 Computer Vision

Carnegie Mellon University (Kris Kitani)

What’s different between these two images?

Objects that are close move more or less?

The amount of horizontal movement is
inversely proportional to …

The amount of horizontal movement is
inversely proportional to …

… the distance from the camera.

X

O O0

image plane

X

O O0
ff x

x

0 image plane

X

O O0
ff x

x

0

Z

X

O O0

(baseline)
b

ff x

x

0

Z

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

b�X

Z

=
x

0

f

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

d = x� x

0

=
bf

Z

Disparity

b�X

Z

=
x

0

f

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

d = x� x

0

=
bf

Z

Disparity
inversely proportional
to depth

b�X

Z

=
x

0

f

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Real-time stereo sensing

http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Subaru
Eyesight system

Pre-collision
braking

How so you compute depth
from a stereo pair?

1. Rectify images  
(make epipolar lines horizontal)

2. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity

Z =
bf

d

How can you make the epipolar lines horizontal?

It’s hard to make the image planes exactly parallel

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

When this relationship holds

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

!
!
!

"

#

$
$
$

%

&

−=×=

00
00

000

T
TRtE

RtExExT ×==" ,0

When this relationship holds

Let’s try this out…

This always has to hold

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

!
!
!

"

#

$
$
$

%

&

−=×=

00
00

000

T
TRtE

() () vTTv
vT
Tvuv

u

T
Tvu !==

"
"
"

#

$

%
%
%

&

'

!

−=
"
"
"

#

$

%
%
%

&

'
!

!

)
)
)

*

+

,
,
,

-

.

− 0
0

10
100

00
000

1

RtExExT ×==" ,0

When this relationship holds

Write out the constraint

Let’s try this out…

This always has to hold

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

!
!
!

"

#

$
$
$

%

&

−=×=

00
00

000

T
TRtE

() () vTTv
vT
Tvuv

u

T
Tvu !==

"
"
"

#

$

%
%
%

&

'

!

−=
"
"
"

#

$

%
%
%

&

'
!

!

)
)
)

*

+

,
,
,

-

.

− 0
0

10
100

00
000

1

RtExExT ×==" ,0

y coordinate is
always the same!

When this relationship holds

Write out the constraint

Let’s try this out…

This always has to hold

The image of a 3D point will
always be on the same

horizontal line

What is stereo rectification?

What is stereo rectification?

Reproject image
planes onto a
common plane
parallel to the line
between camera
centers

What is stereo rectification?

Reproject image
planes onto a
common plane
parallel to the line
between camera
centers

Two homographies
(3x3 transform), one
for each input image
reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

Stereo Rectification

1. Rotate the left camera so that the epipole is at infinity

2. Apply the same rotation to the right camera

3. Rotate the right camera by R-1

4. Adjust the scale

Setting the epipole to infinity  
(Building Rrect from e)

Let

r1 = e1 =
T

||T ||

Rrect =

2

4
r>1
r>2
r>3

3

5

r2 =
1q

T 2
x

+ T 2
y

⇥
�T

y

T
x

0
⇤

r3 = r1 ⇥ r2

epipole coincides with translation vector

cross product of e and
the direction vector of

the optical axis

orthogonal vector

Rrecte1 =

2

4
r>1 e1
r>2 e1
r>3 e1

3

5 =

2

4
?
?
?

3

5

r1 = e1 =
T

||T ||If and r2 r3 orthogonal

then

Rrecte1 =

2

4
r>1 e1
r>2 e1
r>3 e1

3

5 =

2

4
1
0
0

3

5

r1 = e1 =
T

||T ||If and r2 r3 orthogonal

then

Where is this point located on the image plane?

Stereo Rectification Algorithm!

1. Estimate E using the 8 point algorithm (SVD)!

2. Estimate the epipole e (SVD of E)!

3. Build Rrect from e!

4. Decompose E into R and T!

5. Set R1=Rrect and R2 = RRrect!

6. Rotate each left camera point (warp image)  
[x’ y’ z’] = R1 [x y z]!

7. Rectified points as p = f/z’[x’ y’ z’]!

8. Repeat 6 and 7 for right camera points using R2

Stereo Rectification Algorithm!

1. Estimate E using the 8 point algorithm!

2. Estimate the epipole e (solve Ee=0)!

3. Build Rrect from e!

4. Decompose E into R and T!

5. Set R1=Rrect and R2 = RRrect!

6. Rotate each left camera point x’~ Hx where H = KR1  
*You may need to alter the focal length (inside K) to keep points within the
original image size !

7. Repeat 6 and 7 for right camera points using R2

Unrectified

Unrectified

Rectified

Unrectified

Rectified

Finding the best match

Matching cost

disparity

Left Right

scanline

• Slide a window along the epipolar line and compare contents of
that window with the reference window in the left image

• Matching cost: SSD or normalized correlation

SSD

Normalized cross-correlation

Similarity Measure Formula
Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

SAD SSD NCC Ground truth

Effect of window size

W = 3 W = 20

Effect of window size

W = 3 W = 20

Smaller window!
+ More detail
- More noise

Larger window!
+ Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

When will stereo block matching fail?

textureless regions repeated patterns

specularities

(break)

Improving Stereo Block Matching

Block matching Ground truth

What are some problems with the result?

How can we improve depth estimation?

Uniqueness !
For any point in one image, there should be at most one
matching point in the other image

Ordering!
Corresponding points should be in the same order in both views

Ordering!
Corresponding points should be in the same order in both views

Smoothness!
We expect disparity values to change slowly (for the most part)

Too many discontinuities Better

Stereo matching as … 
 energy minimization

What defines a good stereo correspondence?
1. Match quality!
– Want each pixel to find a good match in the other image

2. Smoothness!
– If two pixels are adjacent, they should (usually) move about the same amount

{ {
(match cost) (smoothness cost)

Want each pixel to find a good
match in the other image

Adjacent pixels should (usually)
move about the same amount

data term smoothness term

SSD distance between windows
centered at I(x, y) and J(x+ d(x,y), y)

4#connected*
neighborhood

8#connected*
neighborhood

: set of neighboring pixels

SSD distance between windows
centered at I(x, y) and J(x+ d(x,y), y)

“Potts model”

L1 distance

Dynamic Programming

Can minimize this independently per scanline
using dynamic programming (DP)

: minimum cost of solution such that d(x,y) = d

Match only Match & smoothness
(graph cuts)

Ground Truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Stereo Vision
16-385 Computer Vision

Carnegie Mellon University (Kris Kitani)

What’s different between these two images?

Objects that are close move more or less?

The amount of horizontal movement is
inversely proportional to …

The amount of horizontal movement is
inversely proportional to …

… the distance from the camera.

X

O O0

image plane

X

O O0
ff x

x

0 image plane

X

O O0
ff x

x

0

Z

X

O O0

(baseline)
b

ff x

x

0

Z

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

b�X

Z

=
x

0

f

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

d = x� x

0

=
bf

Z

Disparity

b�X

Z

=
x

0

f

X

O O0

(baseline)
b

ff x

x

0

X

Z

=
x

f

Z

d = x� x

0

=
bf

Z

Disparity
inversely proportional
to depth

b�X

Z

=
x

0

f

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Real-time stereo sensing

http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Subaru
Eyesight system

Pre-collision
braking

How so you compute depth
from a stereo pair?

1. Rectify images  
(make epipolar lines horizontal)

2. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity

Z =
bf

d

How can you make the epipolar lines horizontal?

It’s hard to make the image planes exactly parallel

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

When this relationship holds

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

!
!
!

"

#

$
$
$

%

&

−=×=

00
00

000

T
TRtE

RtExExT ×==" ,0

When this relationship holds

Let’s try this out…

This always has to hold

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

!
!
!

"

#

$
$
$

%

&

−=×=

00
00

000

T
TRtE

() () vTTv
vT
Tvuv

u

T
Tvu !==

"
"
"

#

$

%
%
%

&

'

!

−=
"
"
"

#

$

%
%
%

&

'
!

!

)
)
)

*

+

,
,
,

-

.

− 0
0

10
100

00
000

1

RtExExT ×==" ,0

When this relationship holds

Write out the constraint

Let’s try this out…

This always has to hold

t

x

x’

How can you make the epipolar lines horizontal?

R = I t = (T, 0, 0)

!
!
!

"

#

$
$
$

%

&

−=×=

00
00

000

T
TRtE

() () vTTv
vT
Tvuv

u

T
Tvu !==

"
"
"

#

$

%
%
%

&

'

!

−=
"
"
"

#

$

%
%
%

&

'
!

!

)
)
)

*

+

,
,
,

-

.

− 0
0

10
100

00
000

1

RtExExT ×==" ,0

y coordinate is
always the same!

When this relationship holds

Write out the constraint

Let’s try this out…

This always has to hold

The image of a 3D point will
always be on the same

horizontal line

What is stereo rectification?

What is stereo rectification?

Reproject image
planes onto a
common plane
parallel to the line
between camera
centers

What is stereo rectification?

Reproject image
planes onto a
common plane
parallel to the line
between camera
centers

Two homographies
(3x3 transform), one
for each input image
reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

Stereo Rectification
1. Rotate the left camera so that the epipole is at infinity

2. Apply the same rotation to the right camera

3. Rotate the right camera by R-1

4. Adjust the scale

Setting the epipole to infinity  
(Building Rrect from e)

Let

r1 = e1 =
T

||T ||

Rrect =

2

4
r>1
r>2
r>3

3

5

r2 =
1q

T 2
x

+ T 2
y

⇥
�T

y

T
x

0
⇤

r3 = r1 ⇥ r2

epipole coincides with translation vector

cross product of e and
the direction vector of

the optical axis

orthogonal vector

Rrecte1 =

2

4
r>1 e1
r>2 e1
r>3 e1

3

5 =

2

4
?
?
?

3

5

r1 = e1 =
T

||T ||If and r2 r3 orthogonal

then

Rrecte1 =

2

4
r>1 e1
r>2 e1
r>3 e1

3

5 =

2

4
1
0
0

3

5

r1 = e1 =
T

||T ||If and r2 r3 orthogonal

then

Where is this point located on the image plane?

Stereo Rectification Algorithm!

1. Estimate E using the 8 point algorithm (SVD)!

2. Estimate the epipole e (SVD of E)!

3. Build Rrect from e!

4. Decompose E into R and T!

5. Set R1=Rrect and R2 = RRrect!

6. Rotate each left camera point (warp image)  
[x’ y’ z’] = R1 [x y z]!

7. Rectified points as p = f/z’[x’ y’ z’]!

8. Repeat 6 and 7 for right camera points using R2

Stereo Rectification Algorithm!

1. Estimate E using the 8 point algorithm!

2. Estimate the epipole e (solve Ee=0)!

3. Build Rrect from e!

4. Decompose E into R and T!

5. Set R1=Rrect and R2 = RRrect!

6. Rotate each left camera point x’~ Hx where H = KR1  
*You may need to alter the focal length (inside K) to keep points within the
original image size !

7. Repeat 6 and 7 for right camera points using R2

Unrectified

Unrectified

Rectified

Unrectified

Rectified

Finding the best match

Matching cost

disparity

Left Right

scanline

• Slide a window along the epipolar line and compare contents of
that window with the reference window in the left image

• Matching cost: SSD or normalized correlation

SSD

Normalized cross-correlation

Similarity Measure Formula
Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

SAD SSD NCC Ground truth

Effect of window size

W = 3 W = 20

Effect of window size

W = 3 W = 20

Smaller window!
+ More detail
- More noise

Larger window!
+ Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

When will stereo block matching fail?

textureless regions repeated patterns

specularities

(break)

Improving Stereo Block Matching

Block matching Ground truth

What are some problems with the result?

How can we improve depth estimation?

Uniqueness !
For any point in one image, there should be at most one
matching point in the other image

Ordering!
Corresponding points should be in the same order in both views

Ordering!
Corresponding points should be in the same order in both views

Smoothness!
We expect disparity values to change slowly (for the most part)

Too many discontinuities Better

Stereo matching as … 
 energy minimization

What defines a good stereo correspondence?
1. Match quality!
– Want each pixel to find a good match in the other image

2. Smoothness!
– If two pixels are adjacent, they should (usually) move about the same amount

{ {
(match cost) (smoothness cost)

Want each pixel to find a good
match in the other image

Adjacent pixels should (usually)
move about the same amount

data term smoothness term

SSD distance between windows
centered at I(x, y) and J(x+ d(x,y), y)

4#connected*
neighborhood

8#connected*
neighborhood

: set of neighboring pixels

SSD distance between windows
centered at I(x, y) and J(x+ d(x,y), y)

“Potts model”

L1 distance

Dynamic Programming

Can minimize this independently per scanline
using dynamic programming (DP)

: minimum cost of solution such that d(x,y) = d

Match only Match & smoothness
(graph cuts)

Ground Truth

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

