

Two-View Geometry

16-385 Computer Vision
Carnegie Mellon University (Kris Kitani)

2D to 2D Transform (last session)

2D to 2D Transform (last session)

Head Tracking for Desktop Virtual Reality Displays using the Wii Remote

Johnny Chung Lee Human-Computer Interaction Institute Carnegie Mellon University

Camera Matrix

16-385 Computer Vision
Carnegie Mellon University (Kris Kitani)

2D to 2D Transform (last session)

2D to 2D Transform (last session)

A camera is a mapping between

the 3D world

and

a 2D image

A camera is a mapping between the 3D world and a 2D image

What do you think the dimensions are?

x = PX

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous image 3 x 1

Camera matrix 3 x 4

homogeneous world point 4 x 1

The pinhole camera

What is the equation for image coordinate \mathbf{x} (in terms of \mathbf{X})?

Pinhole camera geometry

What is the camera matrix **P** for a pinhole camera model?

$$x = PX$$

Relationship from similar triangles...

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^{\top} \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^{\top}$$

generic camera model

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What does the pinhole camera model look like?

Relationship from similar triangles...

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^{\top} \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^{\top}$$

generic camera model

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What does the pinhole camera model look like?

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Camera origin and image origin might be different

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x & 0 \\ 0 & f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Accounts for different origins

Can be decomposed into two matrices

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(3 x 3)
(3 x 4)

$$P = K[I|0]$$

$$\mathbf{K} = \left[egin{array}{ccccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight]$$
 calibration matrix

Assumes that the camera and world share the same coordinate system

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

What if they are different? How do we align them?

Assumes that the camera and world share the same coordinate system

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

What if they are different? How do we align them?

$$(oldsymbol{X}_w - oldsymbol{ extbf{C}})$$
 Translate

$$(oldsymbol{X}_w - \mathbf{C})$$
 Translate

What happens to points after alignment?

$$\mathbf{R}(oldsymbol{X}_w - \mathbf{C})$$

Rotate Translate

In inhomogeneous coordinates:

$$X_c = \mathbf{R}(X_w - \mathbf{C})$$

In homogeneous coordinates:

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

General mapping of a pinhole camera

$$P = KR[I|-C]$$

General mapping of a pinhole camera

$$P = KR[I|-C]$$

(translate first then rotate)

Another way to write the mapping

$$P = K[R|t]$$

where

$$t = -RC$$

(rotate first then translate)

The camera matrix relates what two quantities?

The camera matrix relates what two quantities?

$$x = PX$$

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix can be decomposed into?

$$P = K[R|t]$$

intrinsic and extrinsic parameters

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix can be decomposed into?

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix can be decomposed into?

$$P = K[R|t]$$

Quiz

The camera matrix relates what two quantities?

$$x = PX$$

3D points to 2D image points

The camera matrix can be decomposed into?

$$P = K[R|t]$$

intrinsic and extrinsic parameters

Generalized pinhole camera model

$$P = K[R|t]$$

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_9 & t_3 \end{bmatrix}$$

intrinsic parameters

extrinsic parameters

$$\mathbf{R} = \left[egin{array}{cccc} r_1 & r_2 & r_3 \ r_4 & r_5 & r_6 \ r_7 & r_8 & r_9 \ \end{array}
ight] \qquad \mathbf{t} = \left[egin{array}{cccc} t_1 \ t_2 \ t_3 \ \end{array}
ight]$$

3D rotation

3D translation

There are many types of camera models (projections)

CCD camera

$$\mathbf{P} = \begin{bmatrix} \alpha_x & 0 & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(assuming that axes are aligned)

How many degrees of freedom?

CCD camera

$$\mathbf{P} = \begin{bmatrix} \alpha_x & 0 & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(assuming that axes are aligned)

How many degrees of freedom?

10 DOF

Finite projective camera

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(assuming that axes are aligned)

How many degrees of freedom?

Finite projective camera

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(assuming that axes are aligned)

How many degrees of freedom?

11 DOF

Orthographic camera

(parallel projection)

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic camera

(parallel projection)

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Affine camera

Weak Perspective Camera

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \bar{Z} \end{bmatrix}$$

Weak Perspective Camera

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & \bar{Z} \end{bmatrix}$$

Affine camera

Perspective vs Weak Perspective Projection

