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Extract features from an image …

what do we do next?



Feature matching 
(object recognition, 3D reconstruction, augmented reality, image stitching)

How do you compute the transformation?



{xi,x
0
i}

Given a set of matched feature points

x

0 = f(x;p)

and a transformation

Find the best estimate of 

p

parameterstransformation 
function

point in 
one image

point in the 
other image



x

0 = f(x;p)

What kind of transformation functions are there?



2D Transformations



translation rotation aspect

affine perspective cylindrical



2D Planar Transformations



2D Planar Transformations

• Each component multiplied by a scalar 
• Uniform scaling - same scalar for each component

Scale



2D Planar Transformations

• Each component multiplied by a scalar 
• Uniform scaling - same scalar for each component

Scale x

0 = ax

y

0 = by

Scale



2D Planar Transformations

• Each component multiplied by a scalar 
• Uniform scaling - same scalar for each component
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2D Planar Transformations

ScalingShear



2D Planar Transformations

ScalingShear
x

0 = x+ a · y
y

0 = b · x+ y

Shear



2D Planar Transformations

ScalingShear
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2D Planar Transformations
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2D Planar Transformations
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2D Planar Transformations
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Rotation



Polar coordinates… 
x = r cos (φ) 
y = r sin (φ) 
x’ = r cos (φ + θ) 
y’ = r sin (φ + θ) 
!
Trig Identity… 
x’ = r cos(φ) cos(θ) – r sin(φ) sin(θ) 
y’ = r sin(φ) cos(θ) + r cos(φ) sin(θ) 
!
Substitute… 
x’ = x cos(θ) - y sin(θ) 
y’ = x sin(θ) + y cos(θ)

θ

(x, y)

(x’, y’)

φ



2D Planar Transformations

x =


x

y

�

x

0 =


x

0

y

0

�

✓

Rotation


x

0

y

0

�
=


cos ✓ � sin ✓

sin ✓ cos ✓

� 
x

y

�



x

0 = f(x;p)
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2D linear transformation  
(can be written in matrix form)

p
x

parameters point
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How do you represent translation with a 2 x 2 matrix?

x

0 = x+ t

x

y

0 = y + t

x

M =


? ?
? ?
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How do you represent translation with a 2 x 2 matrix?

x

0 = x+ t

x

y

0 = y + t

x

not possible



 Q: How can we represent translation in matrix form?

25
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0 = x+ t
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y

0 = y + t

y



Homogeneous 
Coordinates




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Represent 2D point with a 3D vector

add a one here

homogenous 
coordinates

inhomogenous 
coordinates



 Q: How can we represent translation in matrix form?

x

0 = x+ t

x

y

0 = y + t

y

M =

2

4
1 0 t

x

0 1 t
y

0 0 1

3

5


x

y

�
)

2

4
x

y

1

3

5

A: append 3rd element and append 3rd column & row 



Homogeneous 
Coordinates

t
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A 2D point in an image can be represented as a 3D vector
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Why?



Think of a point on the image plane in 3D

X

x

y

z

z = 1

image plane

P

X is a projection of  
a point P on  

the image plane

You can think of a conversion to homogenous 
coordinates as a conversion of a point to a ray



Conversion:!

• 2D point → homogeneous point 
 
append 1 as 3rd coordinate 

• homogeneous point → 2D point 
 
divide by 3rd coordinate  

Special Properties!

• Scale invariant 

• Point at infinity 

• Undefined
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Basic 2D transformations as 3x3 matrices

Translate

Rotate Shear

Scale



Matrix Composition
! Transformations can be combined by matrix multiplication

p’   =     ! T(tx,ty)                 !              R(Θ)                     S(sx,sy)            p

Does the order of multiplication matter?



2D transformations





Affine Transformation
Affine transformations are combinations of  

•Linear transformations, and 
•Translations 

Properties of affine transformations: 
•Origin does not necessarily map to origin 
•Lines map to lines 
•Parallel lines remain parallel 
•Ratios are preserved 
•Closed under composition 
!

Will the last coordinate w ever change?



2D Alignment: Linear Least Squares
16-385 Computer Vision (Kris Kitani)



Extract features from an image …

what do we do next?



Feature matching 
(object recognition, 3D reconstruction, augmented reality, image stitching)

How do we estimate the transformation?



{xi,x
0
i}

Given a set of matched feature points

x

0 = f(x;p)

and a transformation

Find the best estimate of 

p

parameterstransformation 
function

point in 
one image

point in the 
other image



Model fitting



Recover the transformation

f(x,y) g(x,y)

Given f and g, how would you recover the transform T? 
(user will provide correspondences) 

How many do we need?

T



Translation

f(x,y) g(x,y)

T

• How many Degrees of Freedom? 
• How many correspondences needed? 
• What is the transformation matrix?



Euclidean

f(x,y) g(x,y)

T

• How many Degrees of Freedom? 
• How many correspondences needed for translation+rotation? 
• What is the transformation matrix?



Affine

f(x,y) g(x,y)

T

• How many Degrees of Freedom? 
• How many correspondences needed for affine? 
• What is the transformation matrix?



Projective

f(x,y) g(x,y)

T

• How many Degrees of Freedom? 
• How many correspondences needed for projective? 
• What is the transformation matrix?



Suppose we have two triangles: ABC and DEF. 
!

What transformation will map A to D, B to E, and C to F? 
  

How can we get the parameters?

A

D

B E

F

C



Estimate transformation parameters using  

Linear least squares



{xi,x
0
i}

Given a set of matched feature points

x

0 = f(x;p)

and a transformation

Find the best estimate of 

p

parameterstransformation 
function

point in 
one image

point in the 
other image
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Given point correspondences
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How can you solve for the transformation?

Given point correspondences



ELS =
X

i

kf(xi;p)� x

0
ik2

Least Squares Error

x1

x2

x3

x

0
1

x

0
2

x

0
3

f

(xi;p)



ELS =
X

i

kf(xi;p)� x

0
ik2

What is this?

Least Squares Error

What is this?
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ELS =
X

i

kf(xi;p)� x

0
ik2

What is this?

Least Squares Error

What is this?
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What is 
this?



ELS =
X

i

kf(xi;p)� x

0
ik2

predicted 
location

Least Squares Error

measured 
location

x1

x2

x3

x

0
1

x

0
2

x

0
3

f
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Euclidean 
(L2) norm
Euclidean 
(L2) norm

squared!

why not just squared?  
(vector norm inside)



ELS =
X

i

kf(xi;p)� x

0
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Residual 
(projection error)
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ELS =
X

i

kf(xi;p)� x

0
ik2

What is the free variable? 
What do we want to optimize?

x1

x2

x3

x

0
1

x

0
2

x

0
3

f

(xi;p)

Least Squares Error



x1

x2

x3

x

0
1

x

0
2

x

0
3

f

(xi;p)

p̂ = argmin
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Find parameters that minimize squared error



General form of linear least squares

ELLS =
X

i

|aix� bi|2

= kAx� bk2 (matrix form)

(Warning: change of notation. x is a vector of parameters!)

This function is quadratic. 
How do you find the root of a quadratic?



General form of linear least squares

ELLS =
X

i

|aix� bi|2

= kAx� bk2 (matrix form)

(Warning: change of notation. x is a vector of parameters!)

ELLS = x

>(A>A)x� 2x>(A>
b) + kbk2

Expand

Take derivative, 
set to zero (A>A)x = A>

b

(normal equation)

Minimize the error:

Solve for x
x = (A>A)�1A>

b
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For the Affine transformation

Vectorize transformation parameters

...
...

A xbNotation in 
general form

x

0 = f(x;p)



Linear  

least squares  

estimation  

only works  

when the  

transform function  

is  

?



Linear  

least squares  

estimation  

only works  

when the  

transform function  

is  

linear!



Also  

doesn’t  

deal well  

with 

outliers



Projective Transform
Projective transformations are combos of  

•Affine transformations, and 
•Projective warps 

Properties of projective transformations: 
•Origin does not necessarily map to origin 
•Lines map to lines 
•Parallel lines do not necessarily remain parallel 
•Ratios are not preserved 
•Closed under composition 
•Models change of basis 
•Projective matrix is defined up to a scale (8 DOF)

Coming soon…



Direct Linear Transform
16-385 Computer Vision 
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We want to estimate the transformation between points…

Do you notice anything about these point correspondences?



We want to estimate the transformation between points…

The transformation of coplanar points can be described by a projective transform 
(will NOT work for non-coplanar points)
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homography

parameters of the transform

Projective Transform (Homography)



{xi,x
0
i}

Given a set of matched feature points

x

0 = f(x;p)

and a transformation

Find the best estimate of 

p

projective transform (homography)

point in 
one image

point in the 
other image
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Given 
!
!

how do you solve for the parameters?

How do you deal with this?

parameters

{xi,x
0
i}
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Given 
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!

how do you solve for the parameters?

How do you deal with this?

parameters
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Direct Linear Transform
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Remove scale factor and get it in a linear form 
(rewrite similarity equations as homogenous linear equation and solve → DLT)
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1 = ↵(h7x+ h8y + h9)

Multiplied out

Divide out unknown scale factor (divide line 1 and 2 by 3)

Remove scale factor and get it in a linear form 
(rewrite similarity equations as homogenous linear equation and solve → DLT)
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x

0 = ↵(h1x+ h2y + h3)

y

0 = ↵(h4x+ h5y + h6)

1 = ↵(h7x+ h8y + h9)

Multiplied out

Divide out unknown scale factor (divide line 1 and 2 by 3)

x

0(h7x+ h8y + h9) = (h1x+ h2y + h3)

y

0(h7x+ h8y + h9) = (h4x+ h5y + h6)

Remove scale factor and get it in a linear form 
(rewrite similarity equations as homogenous linear equation and solve → DLT)
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x

0 = ↵(h1x+ h2y + h3)

y

0 = ↵(h4x+ h5y + h6)

1 = ↵(h7x+ h8y + h9)

Multiplied out

Divide out unknown scale factor (divide line 1 and 2 by 3)

x

0(h7x+ h8y + h9) = (h1x+ h2y + h3)

y

0(h7x+ h8y + h9) = (h4x+ h5y + h6)

Remove scale factor and get it in a linear form 
(rewrite similarity equations as homogenous linear equation and solve → DLT)

How do you rearrange terms to make it a linear system of equations?



x

0(h7x+ h8y + h9) = (h1x+ h2y + h3)

y

0(h7x+ h8y + h9) = (h4x+ h5y + h6)

h7xx
0 + h8yx

0 + h9x
0 � h1x� h2y � h3 = 0

h7xy
0 + h8yy

0 + h9y
0 � h4x� h5y � h6 = 0

Just rearrange the terms



h7xx
0 + h8yx

0 + h9x
0 � h1x� h2y � h3 = 0

h7xy
0 + h8yy
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0 � h4x� h5y � h6 = 0
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In matrix form:

How many equations from one point correspondence?
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=

‘Homogeneous Linear Least Squares’ problem

How do we solve this? 
(usually have more constraints than variables)
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‘Homogeneous Linear Least Squares’ problem

Solve with SVD!



A = U⌃V>

=
9X

i=1

�iuiv
>
i

Each column of V represents a solution for

Singular Value Decomposition
orthogonal

diagonal

orthogonal

Ah = 0
where the eigenvalues represents the reprojection error



Solving for H using DLT

{xi,x
0
i}Given solve for H such that

x

0 = Hx

1. For each correspondence, create 2x9 matrix Ai

2. Concatenate into single 2n x 9 matrix A
3. Compute SVD of 

4. Store Eigenvector of the smallest Eigenvalue

5. Reshape to get

h = vî

H

A = U⌃V>

=
9X

i=1

�iuiv
>
i



General form of total least squares

(matrix form)

(Warning: change of notation. x is a vector of parameters!)

ETLS =
X

i

(aix)
2

= kAxk2

kxk2 = 1 constraint

kAxk2

kxk2
minimize

subject to

kAxk2

kxk2 = 1
minimize

Solution is the eigenvector  
corresponding to smallest eigenvalue of

A>A

(Rayleigh quotient)



RANSAC
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Up to now, we’ve assumed correct correspondences



What if there are mismatches?

outlier

How would you find just the inliers?



RANSAC 
RANdom SAmple Consensus

[Fischler & Bolles in ’81]



Algorithm:!
!
1.  Sample (randomly) the number of points required to fit the model 
2.  Solve for model parameters using samples  
3.  Score by the fraction of inliers within a preset threshold of the model 
!
Repeat 1-3 until the best model is found with high confidence

Fitting lines  
(with outliers)



Algorithm:!
!
1.  Sample (randomly) the number of points required to fit the model!
2.  Solve for model parameters using samples  
3.  Score by the fraction of inliers within a preset threshold of the model 
!
Repeat 1-3 until the best model is found with high confidence

Fitting lines  
(with outliers)



Algorithm:!
!
1.  Sample (randomly) the number of points required to fit the model 
2.  Solve for model parameters using samples  
3.  Score by the fraction of inliers within a preset threshold of the model 
!
Repeat 1-3 until the best model is found with high confidence

Fitting lines  
(with outliers)



δ
6=IN

Algorithm:!
!
1.  Sample (randomly) the number of points required to fit the model 
2.  Solve for model parameters using samples  
3.  Score by the fraction of inliers within a preset threshold of the model!
!
Repeat 1-3 until the best model is found with high confidence

Fitting lines  
(with outliers)



δ
14=IN

Algorithm:!
!
1.  Sample (randomly) the number of points required to fit the model 
2.  Solve for model parameters using samples  
3.  Score by the fraction of inliers within a preset threshold of the model 
!
Repeat 1-3 until the best model is found with high confidence

Fitting lines  
(with outliers)



How to choose parameters?
• Number of samples N 
– Choose N so that, with probability p, at least one random sample is free 

from outliers (e.g. p=0.99) (outlier ratio: e ) 

• Number of sampled points s 
–Minimum number needed to fit the model 

• Distance threshold δ 
– Choose δ  so that a good point with noise is likely (e.g., prob=0.95) within threshold 
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

N =

log(1� p)

log

✓
1� (1� e)s

◆



Good 
• Robust to outliers 
• Applicable for larger number of parameters than Hough transform 
• Parameters are easier to choose than Hough transform 

!

Bad 
• Computational time grows quickly with fraction of outliers and 

number of parameters  
• Not good for getting multiple fits 
!

Common applications 
• Computing a homography (e.g., image stitching) 
• Estimating fundamental matrix (relating two views)



Matched points



Least Square fit finds the ‘average’ transform



RANSAC: Use one correspondence, find inliers



RANSAC: Use one correspondence, find inliers



RANSAC: Use one correspondence, find inliers



RANSAC: Use one correspondence, find inliers



Estimating homography 
using RANSAC

• RANSAC loop 

1. Get four point correspondences (randomly) 

2. Compute H (DLT) 

3. Count inliers 

4. Keep if largest number of inliers 

• Recompute H using all inliers



Useful for…




