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Extract features from an image ...
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what do we do next?



—eature matching
(object recognition, 3D reconstruction, augmented reality, image stitching)

-;";," ‘ ‘ ‘ I S

AL FLAVOR N
\

i
- 0‘z
\\’ "

How do you compute the transformation?



Given a set of matched feature points

{mzvm;}

point in point in the
one image  other image

and a transformation

/
r = f(x;p)
transformation parameters
function

FiInd the best estimate of

P



What kind of transformation functions are there?

' = f(x;p)



2D Transformations



affine perspective cylindrical



2D Planar Transformations




2D Planar Transformations

 Each component multiplied by a scalar
« Uniform scaling - same scalar for each component




2D Planar Transformations

Scale
r = ax
y' = by

 Each component multiplied by a scalar
« Uniform scaling - same scalar for each component




2D Planar Transformations

Scale
_a:’___a 0
Yyl L0 b

\Y}

scaling matrix S

 Each component multiplied by a scalar
« Uniform scaling - same scalar for each component




2D Planar Transformations




2D Planar Transformations

Shear
r=x+a-y

y =b-x+y




2D Planar Transformations

Shear

x’ 1 a
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2D Planar Transformations
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T =
Slne
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(X, ¥)

Polar coordinates...

X =1 COS ()

V =1 sin (})

X =rcos(p + 6)
V' =r1sin(p + 0)
Trig ldentity...

X =r cos(®d) cos(B) —r sin(P) sin(B)
v’ =rsin(¢®) cos(B) + r cos(d) sin(B)

Substitute...
X = X cos(0) -y sin(B)
V' = X sin(B) + y cos(B)
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2D linear transformation

(can be written in matrix form)

x' = f(x;p)

parameters point

D X



Scale

Rotate

cos 6
sin 6

—sin @

cos 6

Flip across y

M =

Flip across origin

1

M =

|[dentity

M =

1

0

0

-
1 -




How do you represent translation with a 2 x 2 matrix?

r =x -+ 1,
y/:y+tx
o o




How do you represent translation with a 2 x 2 matrix?

not possible




Q: How can we represent translation in matrix form?



HOMOQgeneous
Coordinates



add a one here

X
Y

inhomogenous
coordinates

homogenous
coordinates

Represent 2D point with a 3D vector



Q: How can we represent translation in matrix form?

e T 1 0 t,
s =Y M=|0 1 ¢,
- 7 - 1 0 0 1




Homogeneous
Coordinates

O X
Lt [y
0 1]]1




A 2D point In an image can be represented as a 3D vector

_ :/B - i ajl ]
€T — << >> X p— CBQ
Y s
L1 L2
where L = — Yy = —
X3 L3



Think of a point on the image plane in 3D

image plane
Y
P
X/v
® > 2
X is a projection of
s —1 a point P on

the image plane

You can think of a conversion to homogenous
coordinates as a conversion of a point to a ray



Conversion:

e 2D point = homogeneous point

append 1 as 3rd coordinate -

* homogeneous point = 2D point

divide by 3rd coordinate
Special Properties
e Scale invariant [ r Uy w
* Point at infinity [ r y 0 }

» Undefined [ 0 0 0 ]

- x
= | Y
] 1
N T /w
L y/w
:)\[x Yy w
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Basic 2D transformations as 3x3 matrices

cos®
sin ®
0

Translate

—sin®
cos®
0

Rotate

O1[x]

0

1

Scale




Matrix Composition

Transformations can be combined by matrix multiplication

X'l ([T 0 #&x][cos® =-sin® O][sx 0 O0])[x

Y'I=[10 1 #&||sn® cos® 0|0 sy Of ]y

w' \ 0 0 1 0 0 1_ 0O 0 1 jw
P = T(tt) R(©) S(s,0sy) P

Does the order of multiplication matter?



A

Ve
| A translation

2D transformations

/

_r

similarity

T

projeciive

-

—

- q
Euclidean atfine
\

Figure 1: Basic set of 2D planar transtformations
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Name Matrix | # D.O.F.
translation Tt )
rigid (Euclidean) [ R |t }M 3
similarity SRt 4
affine A 6
projective H | 3




Affine Transformation

Affine transformations are combinations of

¢ | inear transformations, and

® [ranslations
Properties of affine transformations:

e Origin does not necessarily map to origin
®| ines map to lines

e Parallel lines remain parallel

e Ratios are preserved
e Closed under composition

Will the last coordinate w ever change?
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Coming soon...

Projective Transform

Projective transformations are combos of

-

_—

e Affine transformations, and

¢ Projective warps
Properties of projective transtormations:

e Origin does not necessarily map to origin
®| ines map to lines

e Parallel lines do not necessarily remain parallel

e Ratios are not preserved
¢ Closed under composition
e Models change of basis

e Projective matrix is defined up to a scale (8 DOF)
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2D Alignment: Linear Least Squares
16-385 Computer Vision (Kris Kitani)



Extract features from an image ...
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what do we do next?



—eature matching
(object recognition, 3D reconstruction, augmented reality, image stitching)
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How do we estimate the transformation?



Given a set of matched feature points

{mzvmfi}

point in point in the
one image  other image

and a transformation

/
r = f(x;p)
transformation parameters
function

FiInd the best estimate of

P



Model titting



Recover the transtormation

Given f and g, how would you recover the transform T7
(user will provide correspondences)

How many do we need?



Translation

* How many Degrees of Freedom? 10
e How many correspondences needed? M=10 1 p'-p,
* What is the transformation matrix? 0 0




Fuclidean

* How many Degrees of Freedom?
 How many correspondences needed for translation+rotation?
e |What is the transformation matrix?



Affine

* How many Degrees of Freedom?
* How many correspondences needed for affine?
e |What is the transformation matrix?



Projective

* How many Degrees of Freedom?
e How many correspondences needed for projective?
e |What is the transformation matrix?



Suppose we have two triangles: ABC and DEF
What transformation will map Ato D, Bto E, and C to F?

How can we get the parameters”?




Estimate transformation parameters using

L Inear least squares



Given a set of matched feature points

{mzvm;}

point in point in the
one image  other image

and a transformation

/
r = f(x;p)
transformation parameters
function

FiInd the best estimate of

P



Given point correspondences



EZ;{» P)

e

Given point correspondences

How can you solve for the transformation?



ﬂ:m;m

Least Squares Error

Ers =) ||f(zsp) — ;|



J“(:IJ%LBP)

Least Squares Error

Ers =) ||f(zsp) — ;|
i I I

What is this? What is this?



£(@inP)

Least W / this?

ZHf xzap — &; H2
’L' | I

What is this? What is this?

What is



f(:m%m

Least W
1 | |
T I

Euclidean
/ (L2) norm

‘ | 2 squared!

why not just squared?
(vector norm inside)

predicted measured

location location



J“(:m%m

Least Squares Error

Ers =) ||f(zsp) — ;|

Residual
(projection error)




J“(:sz;ﬁm

Least Squares Error

Frs = Z | f(xzi;p) — x|

What is the free variable?
What do we want to optimize?

DO



£(@inP)

Find parameters that minimize squared error

p = argzgninz | f(xi;p) — z;|°



General form of linear least squares

(Warning: change of notation. x is a vector of parameters!)
2
E ‘ a;, Xl — bz ‘
)

| ‘ A.-’L' — b | ‘ i (matrix form)

Fr1s

This function is quadratic.
How do you find the root of a quadratic?



General form of linear least squares

(Warning: change of notation. x is a vector of parameters!)
2
E ‘ a;, Xl — bz ‘
)

| ‘ A..’I/‘ — b | ‘ . (matrix form)

Fr1s

Minimize the error:

Expanad
Fris=x (A"A)x—2z' (A'b) +||b||?
Take derivative, (ATA)ZE‘ — ATb (normal equation)

set {0 zero

Solve for x L — (ATA)_lATb



For the Affine transformation

/
€T =

Max

/
£

Vectorize transformation parameters

Notation in
general form

X
0
T
0

O o

O = O

= O K8 O

P1
P4

= o O

-

P2
P5

— O = O

P3
P6

—




Linear
least squares
estimation
only works
when the
transform function
S

?



Linear
least squares
estimation
only works
when the
transform function
S

linear!



Also

doesn't

deal well

with

outliers



