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What object do these parts belong to?



a collection of local features 
(bag-of-features)

An object as

Some local feature are 
very informative

• deals well with occlusion 
• scale invariant 
• rotation invariant



(not so) crazy assumption

spatial information of local features  
can be ignored for object recognition (i.e., verification)



Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

Works pretty well for image-level classification

CalTech6 dataset



Bag-of-features

represent a data item (document, texture, image) 
as a histogram over features



Bag-of-features

an old idea
(e.g., texture recognition and information retrieval)

represent a data item (document, texture, image) 
as a histogram over features



Texture recognition

Universal texton dictionary

histogram

Mori, Belongie and Malik, 2001
Julesz, 1981



Vector Space Model
G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation,1979

1 6 2 1 0 0 0 1

Tartan robot CHIMP CMU bio soft ankle sensor

0 4 0 1 4 5 3 2

Tartan robot CHIMP CMU bio soft ankle sensor
http://www.fodey.com/generators/newspaper/snippet.asp



A document (datapoint) is a vector of counts over each word (feature)

What is the similarity between two documents?

vd = [n(w1,d) n(w2,d) · · · n(wT,d)]

n(·) counts the number of occurrences just a histogram over words



A document (datapoint) is a vector of counts over each word (feature)

What is the similarity between two documents?

vd = [n(w1,d) n(w2,d) · · · n(wT,d)]

n(·) counts the number of occurrences just a histogram over words

Use any distance you want but the cosine distance is fast.

d(vi,vj) = cos ✓

=

vi · vj

kvikkvjk
✓
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 but not all words are created equal



TF-IDF

 but not all words are created equal

Term frequency Inverse Document Frequency

vd = [n(w1,d) n(w2,d) · · · n(wT,d)]

vd = [n(w1,d)↵1 n(w2,d)↵2 · · · n(wT,d)↵T ]

term 
frequency

inverse document 
frequency

n(wi,d)↵i = n(wi,d) log

⇢
DP

d0 1[wi 2 d0]

�





Standard BOW pipeline 
(for image classification)



1. Extract features 

2. Learn “visual 
vocabulary” 

3. Quantize features 
using visual 
vocabulary  

4. Represent images 
by frequencies of  
“visual words”
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1. Extract features 

2. Learn “visual 
vocabulary” 

3. Quantize features 
using visual 
vocabulary  

4. Represent images 
by frequencies of  
“visual words”



Feature Extraction



• Regular	
  grid	
  
• Vogel	
  &	
  Schiele,	
  2003 
• Fei-­‐Fei	
  &	
  Perona,	
  2005 

• Interest	
  point	
  detector	
  
• Csurka	
  et	
  al.	
  2004 
• Fei-­‐Fei	
  &	
  Perona,	
  2005 
• Sivic	
  et	
  al.	
  2005	
  

• Other	
  methods	
  
• Random	
  sampling	
  (Vidal-­‐Naquet	
  &	
  

Ullman,	
  2002) 
• Segmentation-­‐based	
  patches	
  (Barnard	
  

et	
  al.	
  2003)



Normalize	
  patch

Detect	
  patches	
  
[Mikojaczyk	
  and	
  Schmid	
  ’02]	
  

[Mata,	
  Chum,	
  Urban	
  &	
  Pajdla,	
  ’02]	
  	
  

[Sivic	
  &	
  Zisserman,	
  ’03]

Compute	
  SIFT	
  
descriptor	
  

	
  	
  	
  	
  	
  	
  [Lowe’99]



…



Visual Vocabulary



…



Clustering

…



Clustering

…
Visual	
  vocabulary



K-means Clustering
Given k:!

1.Select initial centroids at random.!

2.Assign each object to the cluster with the nearest 
centroid.!

3.Compute each centroid as the mean of the objects 
assigned to it.!

4.Repeat previous 2 steps until no change.





Clustering and vector quantization
• Clustering is a common method for learning a visual 

vocabulary or codebook 
• Unsupervised learning process 
• Each cluster center produced by k-means becomes a 

codevector 
• Codebook can be learned on separate training set 
• Provided the training set is sufficiently representative, the 

codebook will be “universal” 

• The codebook is used for quantizing features 
• A vector quantizer takes a feature vector and maps it to the 

index of the nearest codevector in a codebook 
• Codebook = visual vocabulary 
• Codevector = visual word 



Example	
  visual	
  vocabulary

Fei-­‐Fei	
  et	
  al.	
  2005



Example codebook

…

Source: B. Leibe

Appearance codebook



Another codebook

Appearance codebook
…

…
…
…

…

Source: B. Leibe



Visual vocabularies: Issues

• How to choose vocabulary size? 
• Too small: visual words not representative of all patches 
• Too large: quantization artifacts, overfitting 
!

• Computational efficiency 
• Vocabulary trees  

(Nister & Stewenius, 2006)



3.	
  Image	
  representation

…..

fr
eq

ue
nc
y

codewords



Image	
  classification
• Given	
  the	
  bag-­‐of-­‐features	
  representations	
  of	
  images	
  from	
  

different	
  classes,	
  learn	
  a	
  classifier	
  using	
  machine	
  learning



Extension to bag-of-
words models



But	
  what	
  about	
  layout?

All of these images have the same color histogram



level 0

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramid representation
• Extension of a bag of features 
• Locally orderless representation at several levels of resolution



level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)
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level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramid representation
• Extension of a bag of features 
• Locally orderless representation at several levels of resolution


