Bag-of-Visual-Words
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What object do these parts belong to”




Some local feature are
very informative
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(NOt sO) crazy assumption

oy Tée )

spatial information of local features
can be ignored for object recognition (i.e., verification)



CalTechtb dataset

class bag of features ' bag of features Parts-and-shape model
Zhang et al. (2005) | Willamowski et al. (2004) | Fergus et al. (2003)

airplanes 98.8 97.1 90.2
cars (rear) 08.3 98.6 90.3
cars (side) 95.0 87.3 88.5
faces 100 99.3 96.4
motorbikes 98.5 98.0 92.5
spotted cats 97.0 — 90.0

Works pretty well for image-level classification

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)



Bag-of-features

represent a data item (document, texture, image)
as a histogram over features



Bag-of-features

represent a data item (document, texture, image)
as a histogram over features

an old 1dea

(e.qg., texture recognition and information retrieval)
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Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979
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A document (datapoint) is a vector of counts over each word (feature)

vy = [n(wiq) n(wzq) - n(wrgq)l

n() counts the number of occurrences just a histogram over words

The sz;p; :Qartan Tim
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What is the similarity between two documents?




A document (datapoint) is a vector of counts over each word (feature)

vy = [n(wiq) n(wzq) - n(wrgq)l

n() counts the number of occurrences just a histogram over words

The N mu;;p; Tartan Tim

Bio-Inspired Robotic Device

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.
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but not all words are created equal



TF-IDF

Term frequency Inverse Document Frequency

vg = [n(wi,a) n(wzq) -+ n(wrgq)

but not all words are created equal

vy = [n(wyq)ar n(wag)as -+ n(wrq)ar]

n(wi,a)o = n(wiq)log { > 1[?07; c d'| }

term Inverse document
frequency frequency



Example of ti—idf [edit

Suppose we have term frequency tables for a collection consisting of only two documents, as listed on the right, then calculation of tf-idf
for the term "this" in document 1 is performed as follows.

Tf, in its basic form, is just the frequency that we look up in appropriate table. In this Document 1 Document 2
case, it's one. Term Term Count Term Term Count
Idf is a bit more involved: this 1 this 1
. . N s 1 is 1
idf (this, D) = log |
H{de D :ted} a 2 another 2
The numerator of the fraction is the number of documents, which is two. The number sample 1 example 3
of documents in which "this" appears is also two, giving
2

idf(this, D) = log 5 = 0

So tf-idf is zero for this term, and with the basic definition this is true of any term that occurs in all documents.

A slightly more interesting example arises from the word "example", which occurs three times but in only one document. For this
document, tf-idf of "example" is:

tf(example,d;) = 3

2
idf (example, D) = log 1 ~ (0.6931

tfidf(example,d;) = tf(example, d;) x idf(example, D) = 3log 2 ~ 2.0794

(using the natural logarithm).



Standard BOW p|pe\|ne

(for image classification



1. Extract features

2. Learn “visual
vocabulary”

3. Quantize features
using visual
vocabulary

4. Represent images
by frequencies of
‘visual words”
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1. Extract features

2. Learn “visual
vocabulary” ThL W =

3. Quantize features
using visual
vocabulary T W =

4. Represent images
by frequencies of
“visual words”™




Feature extraction



e Regular grid
e Vogel & Schiele, 2003
e Fei-Fei & Perona, 2005

e [nterest point detector
e Csurka et al. 2004
e Fei-Fei & Perona, 2005
e Sivic et al. 2005

e Other methods

e Random sampling (Vidal-Naquet &
Ullman, 2002)

e Segmentation-based patches (Barnard
et al. 2003)




Compute SIFT
descriptor Normalize patch

[Lowe’99]

Detect patches
[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, ‘03]






Visual Vocabulary
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K-means Clustering

Given k:
l.Select initial centroids at random.

2.Assign each object to the cluster with the nearest
centroid.

3.Compute each centroid as the mean of the objects
assigned to 1it.

4 .Repeat previous 2 steps until no change.






Clustering and vector quantization

* Clustering is a common method for learning a visual
vocabulary or codebook

* Unsupervised learning process

» Each cluster center produced by k-means becomes a
codevector

« Codebook can be learned on separate training set

* Provided the training set is sufficiently representative, the
codebook will be “universal”

* The codebook is used for quantizing features

* A vector quantizer takes a feature vector and maps it to the
iIndex of the nearest codevector in a codebook

« Codebook = visual vocabulary
 (Codevector = visual word



Example visual vocabulary
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Example codebook
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Source: B. Leibe



Another codebook
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Visual vocabularies: Issues

* How to choose vocabulary size?
* Too small: visual words not representative of all patches
* Too large: quantization artifacts, overfitting

« Computational efficiency

* Vocabulary trees
(Nister & Stewenius, 2006)




3. Image representation
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Image classification

e Given the bag-of-features representations of images from
different classes, learn a classifier using machine learning




Extension to bag-of-
words models



But what about layout?
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All of these images have the same color histogram



Spatial pyramid representation

« Extension of a bag of features
* Locally orderless representation at several levels of resolution




Spatial pyramid representation

« Extension of a bag of features
* Locally orderless representation at several levels of resolution
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Spatial pyramid representation

« Extension of a bag of features
* Locally orderless representation at several levels of resolution
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Lazebnik, Schmid & Ponce (CVPR 2006)



