

Bag-of-Visual-Words

16-385 Computer Vision Carnegie Mellon University (Kris Kitani)

What object do these parts belong to?

Some local feature are very informative

a collection of local features (bag-of-features)

- deals well with occlusion
- scale invariant
- rotation invariant

(not so) crazy assumption

spatial information of local features can be ignored for object recognition (i.e., verification)

CalTech6 dataset

class	bag of features	bag of features	Parts-and-shape model
	Zhang et al. (2005)	Willamowski et al. (2004)	Fergus et al. (2003)
airplanes	98.8	97.1	90.2
cars (rear)	98.3	98.6	90.3
cars (side)	95.0	87.3	88.5
faces	100	99.3	96.4
motorbikes	98.5	98.0	92.5
spotted cats	97.0		90.0

Works pretty well for image-level classification

Bag-of-features

represent a data item (document, texture, image) as a histogram over features

Bag-of-features

represent a data item (document, texture, image) as a histogram over features

an old idea

(e.g., texture recognition and information retrieval)

Texture recognition

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979

A document (datapoint) is a vector of counts over each word (feature)

$$m{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

$$n(\cdot) \ ext{counts the number of occurrences} ext{just a histogram over words}$$

What is the similarity between two documents?

A document (datapoint) is a vector of counts over each word (feature)

$$m{v}_d = [n(w_{1,d}) \quad n(w_{2,d}) \quad \cdots \quad n(w_{T,d})]$$
 just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.

$$d(\boldsymbol{v}_i, \boldsymbol{v}_j) = \cos \theta$$

$$= \frac{\boldsymbol{v}_i \cdot \boldsymbol{v}_j}{\|\boldsymbol{v}_i\| \|\boldsymbol{v}_j\|}$$

but not all words are created equal

TF-IDF

Term frequency Inverse Document Frequency

$$\mathbf{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

but not all words are created equal

$$\boldsymbol{v}_d = [n(w_{1,d})\alpha_1 \quad n(w_{2,d})\alpha_2 \quad \cdots \quad n(w_{T,d})\alpha_T]$$

$$n(w_{i,d})\alpha_i = n(w_{i,d})\log\left\{\frac{D}{\sum_{d'}\mathbf{1}[w_i\in d']}\right\}$$
 term inverse document frequency frequency

Example of tf-idf [edit]

Suppose we have term frequency tables for a collection consisting of only two documents, as listed on the right, then calculation of tf-idf for the term "this" in document 1 is performed as follows.

Tf, in its basic form, is just the frequency that we look up in appropriate table. In this case, it's one.

ldf is a bit more involved:

$$\mathrm{idf}(\mathsf{this},D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

The numerator of the fraction is the number of documents, which is two. The number of documents in which "this" appears is also two, giving

$$\mathrm{idf}(\mathsf{this},D) = \log\frac{2}{2} = 0$$

So tf-idf is zero for this term, and with the basic definition this is true of any term that occurs in all documents.

A slightly more interesting example arises from the word "example", which occurs three times but in only one document. For this document, tf-idf of "example" is:

$$\begin{split} &\operatorname{tf}(\mathsf{example}, d_2) = 3 \\ &\operatorname{idf}(\mathsf{example}, D) = \log \frac{2}{1} \approx 0.6931 \\ &\operatorname{tfidf}(\mathsf{example}, d_2) = \operatorname{tf}(\mathsf{example}, d_2) \times \operatorname{idf}(\mathsf{example}, D) = 3\log 2 \approx 2.0794 \end{split}$$
 (using the natural logarithm).

Document 1

2004111011111		
Term	Term Count	
this	1	
is	1	
a	2	
sample	1	

Document 2

Term	Term Count			
this	1			
is	1			
another	2			
example	3			

Standard BOW pipeline

(for image classification)

2. Learn "visual vocabulary"

3. Quantize features using visual vocabulary

2. Learn "visual vocabulary"

3. Quantize features using visual vocabulary

2. Learn "visual vocabulary"

3. Quantize features using visual vocabulary

2. Learn "visual vocabulary"

3. Quantize features using visual vocabulary

2. Learn "visual vocabulary"

3. Quantize features using visual vocabulary

Feature Extraction

Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

Interest point detector

- Csurka et al. 2004
- Fei-Fei & Perona, 2005
- Sivic et al. 2005

Other methods

- Random sampling (Vidal-Naquet & Ullman, 2002)
- Segmentation-based patches (Barnard et al. 2003)

Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

Visual Vocabulary

K-means Clustering

Given k:

- 1. Select initial centroids at random.
- 2.Assign each object to the cluster with the nearest centroid.
- 3. Compute each centroid as the mean of the objects assigned to it.
- 4. Repeat previous 2 steps until no change.

Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Example visual vocabulary

Example codebook

Another codebook

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

3. Image representation

Image classification

 Given the bag-of-features representations of images from different classes, learn a classifier using machine learning

Extension to bag-of-words models

But what about layout?

All of these images have the same color histogram

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

