What is computer vision?

What a computer sees

The goal of computer vision is to give computers perception

typical perception pipeline

representation

typical perception pipeline

representation

easy to get lost in the techniques

typical perception pipeline

components of a computer vision system

Applications of computer vision

Object Recognition

Toshiba Tech IS-910T

2013

DataLogic LaneHawk LH4000

Automated visual inspection

Face detection

Sony Cyber-shot

Age recognition

Smile recognition

skin filter

eye magnification

eye lash density

Face makeovers

Forensics

1984

2002

fingerprint recognition

eatsnap

Word Lens

www.QuestVisual.com

First-down line

SportVision

BMW 5 series

BMW night vision

"Around view" camera

Infinity EX

The system converts image data taken by 4 super-wide angle cameras, to display a virtual image of the vehicle from above.

Image stitching

Photosynth

HAS BEEN ACQUIRED BY Google

Augmented Reality

Virtual Fitting

STYLE IT

CMU alum start up

take a picture of one item

app recommends other clothing that go with it

Computer Vision for VR

Deep Face

Vision in Cars

Social Justice

Human Trafficking

Human Rights Video Forensics

Industry Aggressively Hiring from Universities

Spring 2015 Carnegie Mellon University

Computer Vision

16-385

- Lecturer: Kris Kitani
- TAs: Wei-Chiu Ma, Minghuang Ma
- Class: Tuesday, Thursday 12 to 1:20
- Room: NSH 3002

Website

http://www.cs.cmu.edu/~16385/

Assignments

https://blackboard.andrew.cmu.edu

Discussion¬es plazza

https://piazza.com/cmu/spring2015/16385/home

Project-based

a lot of programming hours and hours of programming days and days of debugging

Grading

• Projects: 90%

• Mid-term exam: 10%

Late days

- 3 late days total (not per project)
- use them wisely

Grading

There are five individual projects and one midterm exam. There is no final exam.

Project 1	Hough Transform	15%
Project 2	Bag of Words	15%
Project 3	Homography	20%
Project 4	Structure from Motion	20%
Project 5	Tracking	20%
Midterm Exam		10%

Image Processing

Jan 13	Introduction
Jan 15	Filtering
Jan 20	Programming Tutorial
Jan 22	Fourier Analysis
Jan 27	Edge Detection
Jan 29	Hough Transform
Feb 03	Generalized Hough Transform

Recognition

Feb 05	Feature Detection
Feb 10	Feature Detection
Feb 12	Feature Descriptors
Feb 17	Feature Descriptors
Feb 19	Object Recognition
Feb 24	Bag of Words
Feb 26	Bag of Words
Mar 03	Midterm Review
Mar 05	Midterm Exam
Mar 10	Spring Break; No Class.
Mar 12	Spring Break; No Class.

Image Transformations(2D)

Mar 17 2D Transforms

Mar 19 2D Alignment, RANSAC

Multi-view Geometry(3D)

Mar 24 Pose Estimation, Triangularization

Mar 26 Epipolar Geometry

Mar 31 Essential and Fundamental Matrix, 8 Point Algorithm

Apr 02 Reconstruction, Stereo Vision

Apr 07 Applications of N-view Geometry

Video Analysis

Apr 09 Optical Flow(Horn-Schunck)

Apr 14 Image Registration(Lucas-Kanade)

Apr 16 No Class.

Apr 21 Image Registration(Lucas-Kanade)

Apr 23 KLT Tracking

Apr 28 Mean-shift Tracking

Apr 30 Guest Lecture

Book (optional)

PDF online

http://szeliski.org/Book/

No screens (smartphone, tablet, laptop, etc.) *unless for taking notes

Class Overview

Image processing

Fourier Transform Sampling, Convolution

Image enhancement Feature detection

Camera optics

Object detection

Image mosaicing

Binocular Stereo

Structure from Motion

Optical Flow

Tracking

