Stereo
Course announcements

• Homework 3 is due on March 4th.
 - How many of you have looked at/started/finished homework 3?

• Take-home quiz 5 is due on March 1st.
Overview of today’s lecture

• Leftover from two-view geometry.
• Revisiting triangulation.
• Disparity.
• Stereo rectification.
• Stereo matching.
• Improving stereo matching.
• Structured light.
Some of these slides were adapted directly from:

• Kris Kitani (16-385, Spring 2017).
• Srinivasa Narasimhan (16-823, Spring 2017).
Revisiting triangulation
How would you reconstruct 3D points?

Left image

Right image
How would you reconstruct 3D points?

1. Select point in one image (how?)
How would you reconstruct 3D points?

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
How would you reconstruct 3D points?

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
3. Find matching point along line (how?)
How would you reconstruct 3D points?

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
3. Find matching point along line (how?)
4. Perform triangulation (how?)
Triangulation

left image

right image

left camera with matrix P

right camera with matrix P'

3D point

x

x'

C

C'
How would you reconstruct 3D points?

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
3. Find matching point along line (how?)
4. Perform triangulation (how?)

What are the disadvantages of this procedure?
Stereo rectification
What’s different between these two images?
Objects that are close move more or less?
The amount of horizontal movement is inversely proportional to …
The amount of horizontal movement is inversely proportional to …

… the distance from the camera.

More formally…
How is X related to x?
\[\frac{X}{Z} = \frac{x}{f} \]
\[\frac{X}{Z} = \frac{x}{f} \]

How is X related to x'?
\[
\frac{X}{Z} = \frac{x}{f}
\]

\[
\frac{b - X}{Z} = \frac{x'}{f}
\]
\[\frac{X}{Z} = \frac{x}{f} \]

\[\frac{b - X}{Z} = \frac{x'}{f} \]

Disparity

\[d = x - x' \] (wrt to camera origin of image plane)

\[= \frac{bf}{Z} \]
Disparity

\[d = x - x' \]

\[\frac{X}{Z} = \frac{x}{f} \]

\[\frac{b - X}{Z} = \frac{x'}{f} \]

Disparity is inversely proportional to depth.

\[d = \frac{bf}{Z} \]
Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
Subaru Eyesight system

Pre-collision braking
What other vision system uses disparity for depth sensing?
Stereoscopes: A 19th Century Pastime
HON. ABRAHAM LINCOLN, President of United States.
This is how 3D movies work
Is disparity the only depth cue the human visual system uses?
So can I compute depth from any two images of the same object?
So can I compute depth from any two images of the same object?

1. Need sufficient baseline

2. Images need to be ‘rectified’ first (make epipolar lines horizontal)
1. Rectify images
 (make epipolar lines horizontal)
2. For each pixel
 a. Find epipolar line
 b. Scan line for best match
 c. Compute depth from disparity

\[Z = \frac{bf}{d} \]
How can you make the epipolar lines horizontal?
What’s special about these two cameras?
\[x' = R(x - t) \]
When are epipolar lines horizontal?

When this relationship holds:

\[R = I \quad t = (T, 0, 0) \]

Proof in take-home quiz 5
It’s hard to make the image planes exactly parallel
How can you make the epipolar lines horizontal?
Use stereo rectification?
What is stereo rectification?
What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

How can you do this?
What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

Need two homographies (3x3 transform), one for each input image reprojection

Stereo Rectification

1. **Rotate** the right camera by R
 (aligns camera coordinate system orientation only)

2. Rotate (rectify) the left camera so that the epipole is at infinity

3. Rotate (rectify) the right camera so that the epipole is at infinity

4. Adjust the **scale**
Stereo Rectification:

1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
Stereo Rectification:

1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
Stereo Rectification:

1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
Stereo Rectification:

1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
Stereo Rectification:

1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
Step 1: Compute \(\mathbf{E} \) to get \(\mathbf{R} \)

\[
\text{SVD:} \quad \mathbf{E} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^\top \\
\text{Let} \quad \mathbf{w} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

We get FOUR solutions:

\[
\mathbf{E} = [\mathbf{R}|\mathbf{T}]
\]

\[
\mathbf{R}_1 = \mathbf{U}\mathbf{w}\mathbf{V}^\top \\
\mathbf{R}_2 = \mathbf{U}\mathbf{w}^\top\mathbf{V}^\top \\
\mathbf{T}_1 = \mathbf{U}_3 \\
\mathbf{T}_2 = -\mathbf{U}_3
\]

two possible rotations \hspace{1cm} \text{two possible translations}
We get FOUR solutions:

\[
\begin{align*}
R_1 &= U W V^\top \\
T_1 &= U_3 \\
R_2 &= U W^\top V^\top \\
T_2 &= -U_3
\end{align*}
\]

\[
\begin{align*}
R_1 &= U W V^\top \\
T_2 &= -U_3 \\
R_2 &= U W^\top V^\top \\
T_1 &= U_3
\end{align*}
\]

Which one do we choose?

Compute determinant of \(R \), valid solution must be equal to 1

(note: \(\det(R) = -1 \) means rotation and reflection)

Compute 3D point using triangulation, valid solution has positive Z value

(Note: negative Z means point is behind the camera)
Let’s visualize the four configurations…

Find the configuration where the point is in front of both cameras
Find the configuration where the points is in front of both cameras
Find the configuration where the points is in front of both cameras
Stereo Rectification:

1. Compute E to get R
2. Rotate right image by R
3. Rotate both images by R_{rect}
4. Scale both images by H
When do epipolar lines become horizontal?
Parallel cameras

Where is the epipole?
Parallel cameras

epipole at infinity
Setting the epipole to infinity
(Building R_{rect} from e)

Let

$$R_{\text{rect}} = \begin{bmatrix} r_1^\top \\ r_2^\top \\ r_3^\top \end{bmatrix}$$

Given:

- epipole e (using SVD on E)
- (translation from E)

$$r_1 = e_1 = \frac{T}{||T||}$$
epipole coincides with translation vector

$$r_2 = \frac{1}{\sqrt{T_x^2 + T_y^2}} \begin{bmatrix} -T_y \\ T_x \\ 0 \end{bmatrix}$$
cross product of e and the direction vector of the optical axis

$$r_3 = r_1 \times r_2$$
orthogonal vector
If \(\mathbf{r}_1 = \mathbf{e}_1 = \frac{T}{||T||} \) and \(\mathbf{r}_2, \mathbf{r}_3 \) orthogonal

then \(R_{\text{rect}} \mathbf{e}_1 = \begin{bmatrix} \mathbf{r}_1^\top \mathbf{e}_1 \\ \mathbf{r}_2^\top \mathbf{e}_1 \\ \mathbf{r}_3^\top \mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} \)
If \(\mathbf{r}_1 = \mathbf{e}_1 = \frac{T}{\|T\|} \) and \(\mathbf{r}_2, \mathbf{r}_3 \) orthogonal

then \(R_{\text{rect}}\mathbf{e}_1 = \begin{bmatrix} \mathbf{r}_1^\top \mathbf{e}_1 \\ \mathbf{r}_2^\top \mathbf{e}_1 \\ \mathbf{r}_3^\top \mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \)

Where is this point located on the image plane?
If \(r_1 = e_1 = \frac{T}{\|T\|} \) and \(r_2 \) \(r_3 \) orthogonal

then \(R_{\text{rect}}e_1 = \begin{bmatrix} r_1^\top e_1 \\ r_2^\top e_1 \\ r_3^\top e_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \)

Where is this point located on the image plane?

At x-infinity
Stereo Rectification Algorithm

1. Estimate E using the 8 point algorithm (SVD)
2. Estimate the epipole e (SVD of E)
3. Build R_{rect} from e
4. Decompose E into R and T
5. Set $R_1 = R_{\text{rect}}$ and $R_2 = RR_{\text{rect}}$
6. Rotate each left camera point (warp image)

 $[x', y', z'] = R_1 [x, y, z]$

7. Rectified points as $p = f/z'[x', y', z']$
8. Repeat 6 and 7 for right camera points using R_2
What can we do after rectification?
Stereo matching
Depth Estimation via Stereo Matching
1. Rectify images
 (make epipolar lines horizontal)
2. For each pixel
 a. Find epipolar line
 b. Scan line for best match
 c. Compute depth from disparity

\[Z = \frac{bf}{d} \]
Reminder from filtering

How do we detect an edge?
Reminder from filtering

How do we detect an edge?
• We filter with something that looks like an edge.

We can think of linear filtering as a way to evaluate how similar an image is locally to some template.
Find this template

How do we detect the template 🕰️ in the following image?
Find this template

How do we detect the template in the following image?

Solution 1: Filter the image using the template as filter kernel.
Find this template

How do we detect the template 👨 in the following image?

Solution 1: Filter the image using the template as filter kernel.

What went wrong?
Find this template

How do we detect the template 🕵️‍♂️ in the following image?

Solution 1: Filter the image using the template as filter kernel.

$$h[m, n] = \sum_{k,j} g[k, l] f[m + k, n + l]$$

Increases for higher local intensities.
Find this template

How do we detect the template 🕵️‍♂️ in the following image?

Solution 2: Filter the image using a zero-mean template.

$$h[m, n] = \sum_{k,l} (g[k, l] - \bar{g}) f[m + k, n + l]$$

What will the output look like?
Find this template

How do we detect the template 👨 in the following image?

Solution 2: Filter the image using a zero-mean template.

What went wrong?
Find this template

How do we detect the template in the following image?

Solution 2: Filter the image using a zero-mean template.
Find this template

How do we detect the template in the following image?

Solution 3: Use sum of squared differences (SSD).

$$h[m, n] = \sum_{k,l} (g[k, l] - f[m + k, n + l])^2$$
Find this template

How do we detect the template 📦 in the following image?

Solution 3: Use sum of squared differences (SSD).

\[
 h[m, n] = \sum_{k,l} (g[k, l] - f[m + k, n + l])^2
\]

What could go wrong?
Find this template

How do we detect the template 📔 in the following image?

Solution 3: Use sum of squared differences (SSD).

\[h[m, n] = \sum_{k,l} (g[k, l] - f[m + k, n + l])^2 \]

Not robust to local intensity changes
Find this template

How do we detect the template 🕵️ in the following image?

Observations so far:

• subtracting mean deals with brightness bias
• dividing by standard deviation removes contrast bias

Can we combine the two effects?
Find this template

How do we detect the template 📖 in the following image?

What will the output look like?

Output
$$h[m, n] = \frac{\sum_{k,l} (g[k, l] - \bar{g})(f[m + k, n + l] - \bar{f}_{m, n})}{\sqrt{(\sum_{k,l} (g[k, l] - \bar{g})^2 \sum_{k,l} (f[m + k, n + l] - \bar{f}_{m, n})^2)}}$$

Solution 4: Normalized cross-correlation (NCC).
Find this template

How do we detect the template 📣 in he following image?

Solution 4: Normalized cross-correlation (NCC).
Find this template

How do we detect the template 🌐 in the following image?

Solution 4: Normalized cross-correlation (NCC).
What is the best method?

It depends on whether you care about speed or invariance.

• Zero-mean: Fastest, very sensitive to local intensity.

• Sum of squared differences: Medium speed, sensitive to intensity offsets.

• Normalized cross-correlation: Slowest, invariant to contrast and brightness.
Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation
Normalized cross-correlation
<table>
<thead>
<tr>
<th>Similarity Measure</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Absolute Differences (SAD)</td>
<td>$\sum_{(i,j) \in W}</td>
</tr>
<tr>
<td>Sum of Squared Differences (SSD)</td>
<td>$\sum_{(i,j) \in W} (I_1(i,j) - I_2(x + i, y + j))^2$</td>
</tr>
<tr>
<td>Zero-mean SAD</td>
<td>$\sum_{(i,j) \in W}</td>
</tr>
<tr>
<td>Locally scaled SAD</td>
<td>$\sum_{(i,j) \in W}</td>
</tr>
<tr>
<td>Normalized Cross Correlation (NCC)</td>
<td>$\frac{\sum_{(i,j) \in W} I_1(i,j).I_2(x + i, y + j)}{\sqrt{\sum_{(i,j) \in W} I_1^2(i,j).\sum_{(i,j) \in W} I_2^2(x + i, y + j)}}$</td>
</tr>
</tbody>
</table>
Effect of window size

W = 3

W = 20
Effect of window size

- **Smaller window**
 - + More detail
 - - More noise

- **Larger window**
 - + Smoother disparity maps
 - - Less detail
 - - Fails near boundaries

$W = 3$

$W = 20$
When will stereo block matching fail?
When will stereo block matching fail?

- Textureless regions
- Repeated patterns
- Specularities
Improving stereo matching
What are some problems with the result?
How can we improve depth estimation?
How can we improve depth estimation?

Too many discontinuities.
We expect disparity values to change slowly.

Let’s make an assumption:
depth should change smoothly
Stereo matching as …

Energy Minimization

What defines a good stereo correspondence?

1. **Match quality**
 - Want each pixel to find a good match in the other image

2. **Smoothness**
 - If two pixels are adjacent, they should (usually) move about the same amount
Want each pixel to find a good match in the other image (block matching result).

Adjacent pixels should (usually) move about the same amount (smoothness function).

\[
E(d) = E_d(d) + \lambda E_s(d)
\]

energy function
(for one pixel)

data term
smoothness term
\[E(d) = E_d(d) + \lambda E_s(d) \]

\[E_d(d) = \sum_{(x,y) \in I} C(x, y, d(x, y)) \]

Data term

SSD distance between windows centered at \(I(x, y) \) and \(J(x + d(x, y), y) \)
\[E(d) = E_d(d) + \lambda E_s(d) \]

\[E_d(d) = \sum_{(x, y) \in I} C(x, y, d(x, y)) \]

SSD distance between windows centered at \(I(x, y) \) and \(J(x + d(x, y), y) \)

\[E_s(d) = \sum_{(p, q) \in \mathcal{E}} V(d_p, d_q) \]

smoothness term

\(\mathcal{E} \): set of neighboring pixels

4-connected neighborhood

8-connected neighborhood
\[
E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p, d_q)
\]
smoothness term

\[
V(d_p, d_q) = |d_p - d_q|
\]
L_1 distance

\[
V(d_p, d_q) = \begin{cases}
0 & \text{if } d_p = d_q \\
1 & \text{if } d_p \neq d_q
\end{cases}
\]
“Potts model”
One possible solution...

Dynamic Programming

\[E(d) = E_d(d) + \lambda E_s(d) \]

Can minimize this independently per scanline using dynamic programming (DP)

\[D(x, y, d) : \text{minimum cost of solution such that } d(x,y) = d \]

\[D(x, y, d) = C(x, y, d) + \min_{d'} \{ D(x - 1, y, d') + \lambda |d - d'| \} \]
All of these cases remain difficult, what can we do?

textureless regions

repeated patterns

specularities
Structured light
Use controlled ("structured") light to make correspondences easier.

Disparity between laser points on the same scanline in the images determines the 3-D coordinates of the laser point on object.
Use controlled ("structured") light to make correspondences easier.
Structured light and two cameras
Example: Laser scanner

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/
The Digital Michelangelo Project, Levoy et al.
15-463/15-663/15-862 Computational Photography

Learn about structured light and other cameras – and build some on your own!

- Cameras that see around corners
- Cameras that measure depth in real time
- Cameras that capture entire focal stacks

http://graphics.cs.cmu.edu/courses/15-463/
References

Basic reading:
• Szeliski textbook, Section 8.1 (not 8.1.1-8.1.3), Chapter 11, Section 12.2.
• Hartley and Zisserman, Section 11.12.