Cryptocurrencies II: Selfish Mining

Teachers: Ariel Procaccia and Alex Psomas (this time)
• Last time:
 ◦ Basic concepts
 ◦ Double spend attack

• Today: Block withholding attacks (Selfish mining)
 ◦ Get a taste of some AGT works on cryptocurrencies
SETUP

• Each miner i has mining power p_i
• $\sum_{i=1}^{n} p_i = 1$
• Each miner chooses a chain to mine on top of, and find a block after a random time t distributed (according to an exponential random variable with mean p_i^{-1})
• Pools behave as a single agent with mining power equal to the sum of participants
• The expected reward of i is the (expected) fraction of blocks that i mined out of the total number of blocks in the longest chain
LONGEST CHAIN IN THIS WORLD

• Whenever selected to build a block, point to the node “furthest from the root”
 ◦ Break ties in favor of the one you hear first
• Broadcast to the whole network

Intuition [Nakamoto 08, the entire Bitcoin community]

• If all other miners follow the longest chain protocol
• And you have <50% of the mining power
• Your best response is to also follow the longest chain protocol
WHY?

• Intuition:
• You only get rewards if your blocks are included in the longest chain
• The rest of the network has more power than you, so if you try to mine your own private chain you’ll never catch up
• Nakamoto even has a correct random walk analysis
 ◦ Doesn’t consider more clever deviations
SELFISH MINE: IDEA

• Everyone mines on top of block B
• Hide a valid block B_s
• Everyone else is wasting resources trying to extend B, while you extend B_s without any competition

Theorem [Eyal-Sirer 14]
If you have $>33\%$ of the mining power, following the longest chain protocol is not a best response to all others following the longest chain protocol.
Current public longest branch

Keep this one secret
SCENARIO 1: THE OTHERS CATCH UP

- Some honest miners will try extend your block because they heard about it first (natural network delays)
- Basically a toss-up
SCENARIO 2: YOU MINE A NEW ONE

Current public longest branch

Try to make your private chain even longer!
SCENARIO 2: YOU MINE A NEW ONE

Current public longest branch

2 blocks ahead!
SCENARIO 2: YOU MINE A NEW ONE

- **Intuition:** The effort of honest miners for creating \hat{B} is wasted!
TOY ANALYSIS

• LuckyLongestChain:
 ◦ Whenever selected to build a block, point to the longest chain node, and break ties in favor of SelfishMiner.
 ◦ Always broadcast your block.

• LuckySelfishMine
 ◦ Whenever selected to build a block, point to the longest chain node, and break ties in favor of SelfishMiner.
 ◦ Broadcast your block iff there is another node of the same distance from the root
TOY ANALYSIS

• LuckySelfishMine is strictly better than LuckyLongestChain, if everyone else is playing LuckyLongestChain.
 ◦ With x fraction of the mining power it gives $x/(1-x)$ fraction of the blocks (instead of x)

• Intuition:
 ◦ Every block is on the longest chain
 ◦ Every block “negates” one other block by the honest people, effectively reducing the overall computational power that goes in actual block making

• We’ll show morally the same result for real LongestChain
SELFISH MINE RECAP

• Maintain a private chain
• If $private\ chain = 0$, and others find block try to extend that
• If $private\ chain = 1$ and others find block, publish $private\ chain$ and try to extend it
• If $private\ chain = 2$ and others find block, publish $private\ chain$ and restart
• If $private\ chain > 2$ and others find block, publish first unpublished block of $private\ chain$
MODEL AS A 2 PLAYER GAME

• Attacker has α fraction of the computational power
• Honest miners have a $1 - \alpha$ fraction
• $\gamma =$ fraction of honest miners who break tie in favor of the attacker when there are two branches of equal length
• Goal: show that the selfish mining attack leads to the attacker having more than an α fraction of the blocks in the final chain
• **State 0**: no branches
• **State 0’**: two public branches of length 1
• **State i**: private chain is i blocks long
• **From 0’ to 0**:
 ◦ Attacker makes a public block with frequency α
 ◦ Honest miners that follow attacker make a public block with frequency $(1 - \alpha)\gamma$
 ◦ Honest miners not following attacker make a public block with frequency $(1 - \alpha)(1 - \gamma)$
ANALYSIS

\[
\begin{align*}
\bullet & \quad p_0 = (1 - \alpha) p_1 + (1 - \alpha) p_2 + (1 - \alpha) p_0 \\
\bullet & \quad p_{0'} = (1 - \alpha) p_1 \\
\bullet & \quad \alpha p_1 = (1 - \alpha) p_2 \\
\bullet & \quad \forall k \geq 2: \alpha p_k = (1 - \alpha) p_{k+1} \\
\bullet & \quad \sum_{k=0}^{\infty} p_k + p_{0'} = 1
\end{align*}
\]
\begin{itemize}
 \item \(p_0 = \frac{\alpha - 2\alpha^2}{\alpha(2\alpha^3 - 4\alpha^2 + 1)} \)
 \item \(p_0' = \frac{(1-\alpha)(\alpha - 2\alpha^2)}{1 - 4\alpha^2 + 2\alpha^3} \)
 \item \(p_1 = \frac{\alpha - 2\alpha^2}{2\alpha^3 - 4\alpha^2 + 1} \)
 \item \(\forall k \geq 2, p_k = \left(\frac{\alpha}{1-\alpha} \right)^{k-1} \frac{\alpha - 2\alpha^2}{2\alpha^3 - 4\alpha^2 + 1} \)
\end{itemize}
a) Two branches of length 1, attacker finds a block
 - Attacker makes revenue of 2
 - \(r_{att} += 2 \cdot p_{0'} \cdot \alpha \)

b) Two branches of length 1, honest miners find a block on top of attacker’s block
 - Attacker and honest make 1 each
 - \(r_{att} += p_{0'} \cdot \gamma \cdot (1 - \alpha), r_{hon} += p_{0'} \cdot \gamma \cdot (1 - \alpha) \)

c) Two branches of length 1, honest miners find a block on top of honest block
 - Honest make revenue of 2
 - \(r_{hon} += p_{0'} \cdot (1 - \gamma) \cdot (1 - \alpha) \)
d) No private branch, honest find block
 - Honest make revenue of 1
 - \(r_{hon} + = p_0 \cdot (1 - \alpha) \)

e) Lead is 2. Honest find block; attacker publishes private chain
 - Attacker makes revenue of 2
 - \(r_{att} + = p_2 \cdot (1 - \alpha) \cdot 2 \)

f) Lead more than 2. Honest find block; attacker publishes one block
 - Attacker makes revenue of 1
 - \(r_{att} + = \text{Pr}[lead > 2] \cdot (1 - \alpha) \)
REVENUE

• Protocol adjusts difficulty so that there is a block every ~10 mins
• So, total revenue for attacker is

\[
\frac{r_{att}}{r_{att} + r_{hon}} = \frac{\alpha(1 - \alpha)^2(4\alpha + \gamma(1 - 2\alpha)) - \alpha^3}{1 - \alpha(1 + (2 - \alpha)\alpha)}
\]

Observation: Selfish mining is profitable when

\[
\frac{1 - \gamma}{3 - 2\gamma} < \alpha < \frac{1}{2}
\]
Fig. 3: For a given γ, the threshold α shows the minimum power selfish mining pool that will trump the honest protocol. The current Bitcoin protocol allows $\gamma = 1$, where Selfish-Mine is always superior. Even under unrealistically favorable assumptions, the threshold is never below $1/3$.

REVENUE
• Study strategic considerations regarding block withholding
• When is honest/longest chain behavior a Nash equilibrium?
SETUP [KKKT 16]

- n players/miners
- $p_i = \text{Probability that miner solves puzzle}$
 - $\sum_i p_i = 1$
- $d = \text{Depth of the game}$
 - Payoffs count only after d blocks
 - Mostly $d = \infty$
- $r^* = \text{reward of mining a block}$
 - Normalized to 1
SETUP

• Public state:
 ◦ A rooted tree of blocks
 ◦ Every node is labeled by one of the players (the miner)
 ◦ Every level has at most one block labeled by player i (no reason for i to mine two)

• Private state of player i:
 ◦ Same as public state, but might have some extra blocks labeled by i
 ◦ Public state is a subtree
TWO MODELS

1. Immediate release model (today)
 ◦ Whenever a miner succeeds in mining a block, he releases it immediately, and all miners can continue from the newly mined block.

2. Strategic release model
 ◦ Whenever a miner succeeds in mining a block, it becomes common knowledge. The miner can decide to postpone its release; others cannot extend it until its public, but know it exists
 ◦ Of course, not meant to be realistic, but a stepping stone to the incomplete information game
STRATEGIES

• Strategy: Two functions $\left(\mu_i, \rho_i \right)$
 ◦ Mining function μ_i selects a block from the public state to mine
 ◦ Release function ρ_i which is a (perhaps empty) private part of the player’s state which is added to the public state.

• FRONTIER/honest strategy: release any mined block immediately and select to mine one of the deepest blocks
PHASES

• Game is played in phases
• In phase t player i is selected with probability p_i to extend the block indicated by μ_i
• Then everyone adds information to the public tree according to their release functions
• Repeat
PAYMENTS

• A miner makes revenue of 1 for every node in the first path to make it to depth d

• Once B_5 is paid, no one tries to extend B_3 or B_4
IMMEDIATE RELEASE GAME

• Want to see when FRONTIER is a best response to everyone else playing FRONTIER
• Problem reduces to a two player game
• Miner 2 with computational power $1 - p$ plays honestly/FRON TIER
• Miner 1 with computational power p best responds to miner 1
• Public state is a tree of width at most 2: two long branches with lengths (a, b)
 ◦ $a =$ length of branch where miner 1 mines
 ◦ $b =$ length of branch where miner 2 mines
IMMEDIATE RELEASE GAME

This never happens
IMMEDIATE RELEASE GAME

• State could be (0,0)
• If $b > 0$, then since Miner 2 is extending the longest chain, $b > a$
 ◦ Eg (3,1) never happens
IMMEDIATE RELEASE GAME

- **Mining states (M):** both mine their own chain
- **Capitulation states (C):** miner 1 gives up
- **Winning states (W):** miner 2 switches ($a > b$)
IMMEDIATE RELEASE GAME

• $g_k(a, b)$: expected gain of miner 1 when the branch of the honest miner in the execution tree is extended by k levels, when starting from an (a, b) tree
 ◦ Intuitively should not depend on (a, b)
• $g^* = $ expected gain per level
• $g^* = \frac{g_k(a,b) - g_{k'}(a,b)}{k-k'},$ for large k, k' and all a,b
• $g_k(a,b) = k \cdot g^* + \phi(a,b)$
 ◦ $\phi(a,b) = \lim_{k \to \infty} g_k(a,b) - k \cdot g^* = $ advantage of miner 1 for being in state (a,b)
 ◦ Alternatively, $\phi(a,b)$ is the expected value of $g_k(a,b) - k \cdot g^*$ until $(0,0)$ is reached
• Objective of miner 1: maximize g^*
IMMEDIATE RELEASE GAME

• For \((a, b) \in M\): with probability \(p\) we go to \((a + 1, b)\), otherwise to \((a, b + 1)\)

• For \((a, b) \in C\): miner 1 abandons branch. New state \((0, s)\)
 ◦ Not necessarily \((0,0)\)

• For \((a, b) \in W\): miner 2 abandons branch. New state \((0,0)\)

• Strategy = pair \((M, s)\) where \((0, s)\) is the state miner 1 jumps to when giving up
IMMEDIATE RELEASE GAME

• Define $g_k(a, b)$ recursively

$$g_k(a, b) = \begin{cases}
\max \{ \max_{s=0,\ldots,b-1} \{g_k(0, s)\}, p g_k(a + 1, b) + (1 - p) g_{k-1}(a, b + 1) \}
& \text{max} \\
& \text{Give up} \\
& \text{Don’t give up} \\
g_{k-1}(0,0) + a, \text{if } a = b + 1
& \text{unless}\end{cases}$$

• Similar for ϕ

$$\phi(a, b) = \begin{cases}
\phi(0,0) + a - g^*, \text{if } a = b + 1
& \text{max} \\
& \text{unless}\end{cases}$$

$$= \max \{ \max_s \phi(0, s), p \phi(a + 1, b) + (1 - p) \phi(a, b + 1) - (1 - p) g^* \}$$

• $\phi(0,0) = 0$
Theorem: FRONTIER is not a best response for $p \geq 0.455$

Proof:
• Say $d = 3$
• $M = \{(0,0), (0,1), (1,1), (1,2), (2,2)\}$, $s = 1$
 ◦ Capitulate in (a, b), $b \geq 3$, and jump to $(0,1)$
• Need to confirm that $g^* \geq p$
 1. Compute $\phi(a, b)$
 • $\phi(0,0) = 0$, $\phi(0,1) = (g^* - p)/(1 - p)$, $\phi(2,2) = \ldots$
 2. It must be that $\phi(a, b) \geq \phi(0,1)$ for $(a, b) \in M$
 3. Picking $g^* = \frac{p^2(2+2p-5p^2+2p^3)}{1-p^2+2p^3-p^4}$ makes everything hold for all $p \geq 0.455$
Theorem: FRONTIER is a NE if and only if $p \leq h_0$, where $h_0 \in [0.361, 0.455]$

Corollary: Frontier is a NE if $p \leq 0.361$
IMMEDIATE RELEASE GAME

Proof sketch:
Starting at any state \((a, b)\), one of the two miners will give up.

1. Bound the probability that miner 1 wins this race starting from state \((a, b)\)
 \[r(a, b) \leq \left(\frac{p}{1-p} \right)^{1+b-a} \]

2. Bound the difference of \(\phi\) between different states as a function of the probability of winning
 \(\phi(a, b)\) is non-decreasing in \(a\)

3. Using all of the above, get an upper bound on \(\phi(0,1)\) as a function of \(p\)
 \[\phi(0,1) \text{ can’t be positive, so solve for } p \]
Theorem: FRONTIER is a NE when a miner i has relative computational power $p_i \leq 0.308$.

Major open direction:

- Do these results extend to incomplete information games?
NEXT TIME

• Transaction fees
• Incentives in mining pools
• Beyond Proof of Work