Social Networks I: Coordination Games

Teachers: Ariel Procaccia (this time) and Alex Psomas
BACKGROUND

- Spread of ideas and new behaviors through a population

- Examples:
 - Political movements
 - Adoption of technological innovations
 - Success of new product

- Process starts with early adopters and spreads through the social network
NETWORKED COORDINATION GAMES

• Simple model for the diffusion of ideas and innovations
• Social network is undirected graph $G = (V, E)$
• Choice between old behavior A and new behavior B
• Parametrized by $q \in (0,1)$
NETWORKED COORDINATION GAMES

• Rewards for u and v when $(u, v) \in E$:
 - If both choose A, they receive q
 - If both choose B, they receive $1 - q$
 - Otherwise both receive 0

• Overall payoff to $v = \text{sum of payoffs}$

• Denote $d_v = \text{degree of } v$, $d_v^X = \#\text{neighbors playing } X$

• Payoff to v from choosing A is qd_v^A; reward from choosing B is $(1 - q)d_v^B$

• v adopts B if $d_v^B \geq qd_v \Rightarrow q$ is a threshold
CASCADING BEHAVIOR

• Each node simultaneously updates its behavior in time steps \(t = 1, 2, \ldots \).
• Nodes in \(S \) initially adopt \(B \).
• \(h_q(S) = \) set of nodes adopting \(B \) after one round.
• \(h^k_q(S) = \) after \(k \) rounds of updates.
• **Question:** When does a small set of nodes convert to the entire population?
• \(V \) is countably infinite and each \(d_v \) is finite

• \(v \) is converted by \(S \) if \(\exists k \) s.t. \(v \in h^k_q(S) \)

• \(S \) is contagious if every node is converted

• Easier to be contagious when \(q \) is small

• Contagion threshold of \(G = \max q \) s.t. \(\exists \) finite contagious set
EXAMPLE

\[q = \frac{1}{2} \]

Poll 1: What is the contagion threshold of \(G \)?
Poll 2: What is the contagion threshold of G?
PROGRESSIVE PROCESSES

• **Nonprogressive** process: Nodes can switch from A to B or B to A

• **Progressive** process: Nodes can only switch from A to B

• As before, a node ν switches to B if a q fraction of its neighbors $N(\nu)$ follow B

• $\bar{h}_q(S) =$ set of nodes adopting B in progressive process; define $\bar{h}_q^k(S)$ as before
PROGRESSIVE PROCESSES

• With progressive processes intuitively the contagion threshold should be at least as high

• **Theorem [Morris, 2000]:** For any graph G, \exists finite contagious set wrt $h_q \iff \exists$ finite contagious set wrt \bar{h}_q

• I.e., the contagion threshold is identical under both models
PROOF OF THEOREM

• Lemma: \(\overline{h}_q^k (X) = h_q \left(\overline{h}_q^{k-1} (X) \right) \cup X \)

• Proof:

 \(\overline{h}_q^k (X) = (\overline{h}_q^k (X) \setminus \overline{h}_q^{k-1} (X)) \cup (\overline{h}_q^{k-1} (X) \setminus X) \cup X \)

 \(\overline{h}_q^k (X) \setminus \overline{h}_q^{k-1} (X) = h_q \left(\overline{h}_q^{k-1} (X) \right) \setminus \overline{h}_q^{k-1} (X) \)

 For every \(v \in \overline{h}_q^{k-1} \setminus X \), \(v \in h_q \left(\overline{h}_q^{k-1} (X) \right) \), because \(v \) has at least as many \(B \) neighbors as when it converted

 Clearly \(X \subseteq h_q \left(\overline{h}_q^{k-1} (X) \right) \cup X \) ■
PROOF OF THEOREM

• Enough to show: given a set S that is contagious wrt \overline{h}_q, there is a set T that is contagious wrt h_q

• Let ℓ s.t. $S \cup N(S) \subseteq \overline{h}_q^\ell(S)$; this is our T

• For $k > \ell$, $\overline{h}_q^k(S) = h_q(\overline{h}_q^{k-1}(S)) \cup S$ by the lemma

• Since $N(S) \subseteq \overline{h}_q^{k-1}(S)$, $S \subseteq h_q(\overline{h}_q^{k-1}(S))$, and hence $\overline{h}_q^k(S) = h_q(\overline{h}_q^{k-1}(S))$

• By induction, all $k > \ell$,

$$\overline{h}_q^k(S) = h_q^{k-\ell}(\overline{h}_q^\ell(S)) = h_q^{k-\ell}(T) \blacksquare$$
CONTAGION THRESHOLD $\leq 1/2$

- Saw a graph with contagion threshold $1/2$
- Does there exist a graph with contagion threshold $> 1/2$?
- The previous theorem allows us to focus on the progressive case
- **Theorem [Morris, 2000]**: For any graph G, the contagion threshold $\leq 1/2$
PROOF OF THEOREM

• Let $q > 1/2$, finite S

• Denote $S_j = \overline{h}_q^j(S)$

• $\delta(X) =$ set of edges with exactly one end in X

• If $S_{j-1} \neq S_j$ then $|\delta(S_j)| < |\delta(S_{j-1})|$
 ◦ For each $v \in S_j \setminus S_{j-1}$, its edges into S_{j-1} are in $\delta(S_{j-1}) \setminus \delta(S_j)$, and its edges into $V \setminus S_j$ are in $\delta(S_j) \setminus \delta(S_{j-1})$
 ◦ More of the former than the latter because v converted and $q > 1/2$

• $\delta(S)$ is finite and $\delta(S_j) \geq 0$ for all j
MORE GENERAL MODELS

- Directed graphs to model asymmetric influence
- Redefine $N(v) = \{u \in V: (u, v) \in E\}$
- Assume progressive contagion
- Node is active if it adopts B; activated if switches from A to B
LINEAR THRESHOLD MODEL

• Nonnegative weight w_{uv} for each edge $(u, v) \in E$; $w_{uv} = 0$ otherwise
• Assume $\forall v \in V, \sum_u w_{uv} \leq 1$
• Each $v \in V$ has threshold θ_v
• v becomes active if

$$\sum_{\text{active } u} w_{uv} \geq \theta_v$$
GENERAL THRESHOLD MODEL

• Linear model assumes additive influences
 ◦ Switch if two co-workers and three family members switch?

• ν has a monotonic function $g_{\nu}(\cdot)$ defined on subsets $X \subseteq N(\nu)$

• ν becomes activated if the activated subset $X \subseteq N(\nu)$ satisfies $g_{\nu}(X) \geq \theta_{\nu}$
THE CASCADE MODEL

• When $\exists (u, v) \in E$ s.t. u is active and v is not, u has one chance to activate v

• v has an **incremental function** $p_v(u, X) = \text{probability that } u \text{ activates } v \text{ when } X \text{ have tried and failed}$

• Special cases:
 - Diminishing returns: $p_v(u, X) \geq p_v(u, Y)$ when $X \subseteq Y$
 - Independent cascade: $p_v(u, X) = p_{uv}$