Mechanism Design I: Basic Concepts and Myerson’s Lemma

Teachers: Ariel Procaccia and Alex Psomas (this time)
MECHANISM DESIGN

- Game Theory: Interaction of rational, competing, strategic agents
- Mechanism Design: “Inverse Game Theory”
 - How do we design systems for rational, competing, strategic agents?
 - We’ll be interested in promoting a desired objective
 - In this class we’ll focus on auctions, but most of the tools we’ll develop are applicable more generally
OLYMPICS 2012: A CAUTIONARY TALE

- 4 groups: A, B, C, D
- 4 teams per group
- Phase 1: Round robin within each group
 - Top two from each group advance in the second phase
- Phase 2: Knockout
 - In the first match, top team from group A is matched with second best of group C. Top team in C with second best from A. Similarly for B and D.
- What does a team want?
 - Maximize probability of winning a gold medal!
- What does the Olympic committee want?
• Phase 1:
 ◦ What if teams A_1 and A_2 have destroyed teams A_3 and A_4, and in the final match are playing each other?
 ◦ No problem! the loser would play the best in C, so A_1 and A_2 are still incentivized to try hard!
 ◦ No problem? What if there’s a huge upset in group C, and the (actually) best team ends up in second place?
 ◦ Come on... What are the chances??
OLYMPICS 2012: A CAUTIONARY TALE

Video (17:30) : https://youtu.be/7mq1ioqiWEO
HOT OFF THE PRESS!!!

Mandra:

• Greek national exams: Average grade is the only criterion to go to university.
• New law: People from Mandra get a small boost.
• 2018: Huge spike in the number of people that declare Mandra as their primary residence.

Flooding (Nov 17):

[Map of Greece with Mandra highlighted]

[Image of flooded area with damage]

© Associated Press Photo
THE APPROACH

What’s wrong with these people???

What’s wrong with these rules?
QUESTIONS

• When can we design systems that are robust to strategic manipulation?

• What does computer science bring to the table?
 ◦ How much harder is mechanism design than algorithm design?

• Tradeoffs between simplicity and optimality.

Disclaimer: This is not an economics course
ASSUMPTIONS

• We’ll be working in a setting with money.
• Agents are risk neutral:
 ◦ Value v_i with probability q_i for $i = 1, \ldots, n$ is the same as value $\sum_{i=1}^{n} v_i q_i$ deterministically.
• Agents have quasi-linear utilities:
 ◦ Utility for value v for a price of p equals $v - p$
• We’ll focus on truthfulness: reporting your true value maximizes your utility (more on this later).
• We’ll also ask for Individual Rationality: if you say the truth, expected utility (over the randomness of the mechanism) is non-negative.
 ◦ Participating is better than staying home.
AUCTIONS

We will mostly talk about auctions
AUCTIONS: EXAMPLES

- eBay
- Google AdWords
- Bing Ads
SINGLE ITEM AUCTIONS

• Single item for sale.
• \(n \) potential buyers: the bidders.
• Each bidder has a private value \(v_i \) for the item.
SEALED-BID AUCTIONS

1. Each bidder i privately communicates her bid b_i, possibly different than v_i, to the auctioneer (in a sealed envelope)

2. The auctioneer decides who to allocate the item to.

3. The auctioneer decides who pays what.
SEALED-BID AUCTIONS

• Obvious answer to (2): give the item to the highest bidder

• Reasonable ways to implement (3):
 ◦ Highest bidder pays her bid, aka a first price auction.
 ◦ Highest bidder pays the minimum bid required to win, i.e. the second highest bid. This is the second price auction.
STRAWMAN

• Wait... Why charge in the first place?
• Proposal: give the item to the highest bidder and charge them nothing.
• Aka, “who can name the highest number?”
• Remember fair division?
 ◦ In retrospect, truthful algorithms that eschew payments look even more amazing!
FIRST PRICE AUCTIONS

• How do I bid??
• If I bid my true value v_i I always get utility zero!
 ◦ If I lose, I get nothing and pay nothing.
 ◦ If I win, I pay v_i and get value v_i.
• So, I "should" bid something smaller than v_i
• How much smaller?
Assume your value = month + day of your birthday. E.g. 10/08/1997, value = 18. How much would you bid?
FIRST PRICE AUCTIONS

• In order to argue about bidding behavior, we need to make more assumptions about the information agents have about other agents’ bids.

• Common assumption: values come from known distribution D_i.

• Common question: what is an equilibrium bidding strategy? That is, if everyone follows this strategy, no one deviates.

• See homework.
SECOND PRICE AUCTIONS

• Who gets the item: highest bidder.
• What do they pay: the second highest bid.
• Claim: For a bidder to set $b_i = v_i$ (weakly) maximizes her utility *no matter what everyone else is doing!*
• Definition: When a player has a strategy that is (weakly) better than all other options, regardless of what the other player does, we will refer to it as a **dominant strategy.**
SECOND PRICE AUCTIONS

• Claim: Truth-telling is a dominant strategy.

Proof:
• Let \(b_{-i} = (b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n) \) be the bids of all players except \(i \). Let
\[B = \max_{j \neq i} b_j \]
• There are two possible outcomes:
 1. \(b_i < B \), \(i \) loses and gets utility \(u_i = 0 \)
 2. \(b_i \geq B \), \(i \) wins, pays \(B \) and gets utility \(u_i = v_i - B \)
• Effectively, \(i \)'s utility is picking between 0 and \(v_i - B \)
 ◦ If \(v_i < B \), \(\max\{0, v_i - B\} = 0 \), which you can get by bidding \(b_i = v_i \)
 ◦ If \(v_i \geq B \), \(\max\{0, v_i - B\} = v_i - B \), which you can get by bidding \(b_i = v_i \)
SECOND PRICE AUCTIONS

• Theorem: The second price auction, aka the Vickrey auction, is awesome!
 ◦ Dominant strategy incentive compatible (DSIC)!
 ◦ Maximizes Social surplus! That is, the item always goes to the agent with the highest value!
 ◦ Can be computed in polynomial (linear) time!
TOWARDS A MORE GENERAL RESULT

• If we have a single item and want to give it to the agent with the highest value, we can do so truthfully.

• What if we don’t want to give the item to the agent with the highest value?
SINGLE PARAMETER ENVIRONMENTS

- n buyers
- Buyer i has private valuation v_i and submits a bid b_i
- An auction is a pair of two functions (x, p)
 - $x(b_1, \ldots, b_n) = (x_1, \ldots, x_n)$ is the allocation function.
 - $x_i =$ Probability that item goes to player i.
 - For single item auctions: $\sum_i x_i \leq 1$
 - Our next result will not use this fact!
 - $p(b_1, \ldots, b_n) = (p_1, \ldots, p_n)$ is the payment function.
 - $p_i =$ Price player i pays.
MYERSON’S LEMMA

• Definition: An allocation rule \(x \) is implementable if there is a payment rule \(p \) such that the auction \((x, p)\) is DSIC.

• We’ve seen that the allocation rule "give the item to the highest bidder" is implementable!

• What about the allocation rule "give the item to the 3-rd highest bidder"?
MYERSON’S LEMMA

• Definition: An allocation rule x is monotone if for every bidder i and bids b_{-i} of the other agents, the allocation $x_i(b_i, b_{-i})$ is monotone non-decreasing in b_i.

• Lemma (Myerson):
 ◦ An allocation is implementable iff it is monotone
 ◦ If x is monotone, there exists a unique (up to a constant) payment rule p that makes (x, p) DSIC, given by

$$p_i(v, b_{-i}) = vx_i(v, b_{-i}) - \int_0^v x_i(z, b_{-i})dz$$
Poll

Is the allocation rule “give the item to the third highest bidder” implementable?

1. Yes
2. No
MYERSON’S LEMMA: PROOF

• IC constraint between v and v':
 \[
 v \ x_i(v, b_{-i}) - p_i(v, b_{-i}) \geq v \ x_i(v', b_{-i}) - p_i(v', b_{-i})
 \]
 \[
 v' \ x_i(v', b_{-i}) - p_i(v', b_{-i}) \geq v' \ x_i(v, b_{-i}) - p_i(v, b_{-i})
 \]

• $v(x_i(v, b_{-i}) - x_i(v', b_{-i})) \geq$
 \[
 p_i(v, b_{-i}) - p_i(v', b_{-i})
 \geq v'(x_i(v, b_{-i}) - x_i(v', b_{-i}))
 \]
MYERSON’S LEMMA: PROOF

• \(v(x_i(v, b_{-i}) - x_i(v', b_{-i})) \geq p_i(v, b_{-i}) - p_i(v', b_{-i}) \geq v'(x_i(v, b_{-i}) - x_i(v', b_{-i})) \)

• \(v \geq v' \) implies monotonicity of the allocation!

• Take \(v' = v - \epsilon \), and take the limit as \(\epsilon \) goes to zero.

 ◦ \(p'_i(v, b_{-i}) = vx_i'(v, b_{-i}) \)

 ◦ \(p_i(v, b_{-i}) = vx_i(v, b_{-i}) - \int_0^v x_i(z, b_{-i})dz + p_i(0, b_{-i}) + c(b_{-i}) \)

• Assuming that \(p_i(0, b_{-i}) = 0 \) (Individual rationality) we get the desired result.
MYERSON’S LEMMA PICTORIALLY

\[x_i(v_i, b_{-i}) \]

\[\text{value} = v \cdot x_i(v, b_{-i}) \]
MYERSON’S LEMMA PICTORIALLY

\[x_i(v_i, b_{-i}) \]
MYERSON’S LEMMA PICTORIALLY

\[x_i(v_i, b_{-i}) \]
SUMMARY

- Basic definitions of single parameter environments
- Second price auctions
- Myerson’s lemma