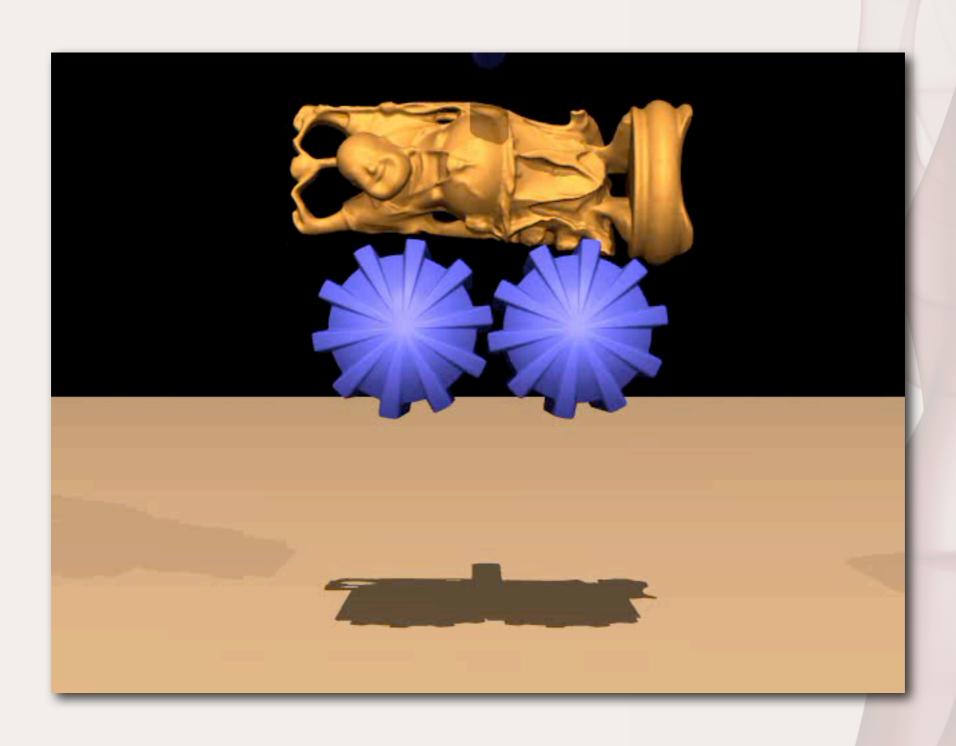
Deformable Materials

Adrien Treuille

Deformable Materials



Taking a Hard Look at Soft Things

Spring with rest length 1:

Deforms by Δx :

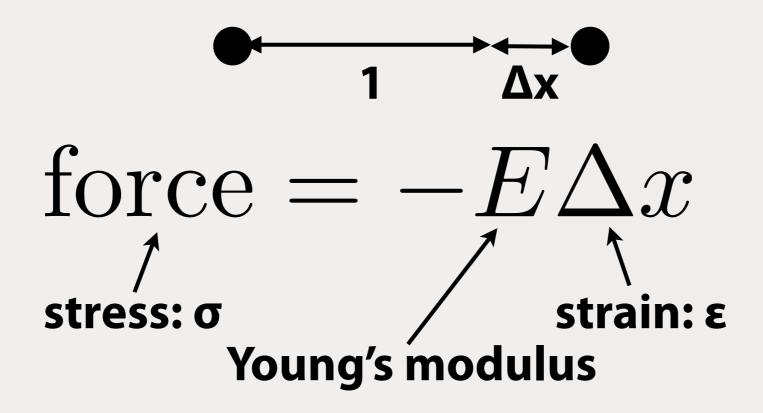
energy =
$$E \frac{1}{2} (\Delta x)^2$$

force =
$$-\frac{d \text{ energy}}{dx}$$

force =
$$-E\Delta x$$

Deformations

Spring deformed by Δx:



Hooke's Law:

$$\sigma = -E\epsilon$$

Steel: E=10¹¹ N/m²

Rubber: E=10⁷~10⁸ N/m²

Hooke's Law

$$\sigma = -E\epsilon$$

- Want to generalize in two ways:
 - Continuum Deformations
 - 3D

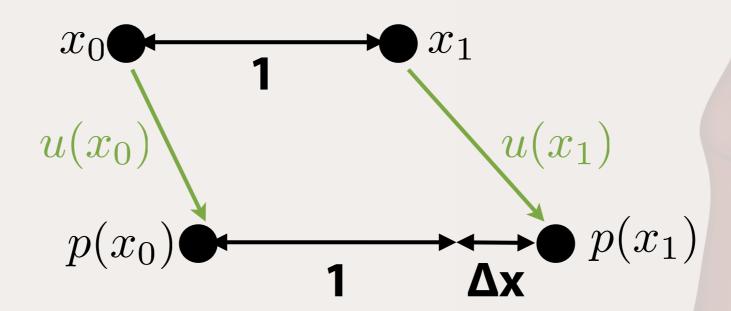
Hooke's Law

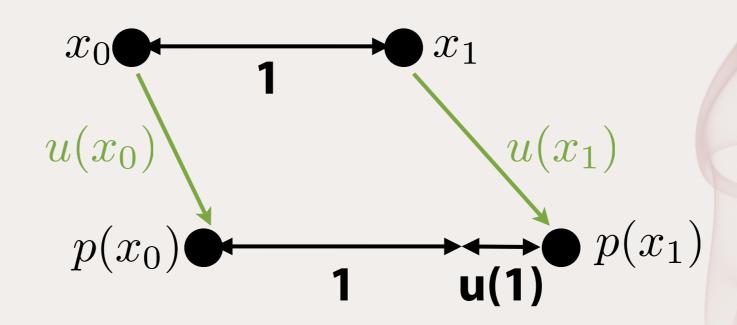
$$\sigma = -E\epsilon$$

- Want to generalize in two ways:
 - Continuum Deformations
 - 3D

Continuum Deformations

- Given a displacement field p(x):
- Which defines a deformation field:
 - $\bullet \quad u(x) = p(x) x$
 - (Like velocities in a fluid.)





- Suppose: $x_0 = 0$ and $x_1 = 1$
- p(1) = 1 + u(1)
- energy = $\frac{1}{2} E(p(1) p(0) 1)^2$
- $p(1) \approx 1 + u(0) + \nabla u(0)$
- energy $\approx \frac{1}{2} E (1 + u(0) + \nabla u(0) u(0) 1)^2$
- energy $\approx \frac{1}{2} E \nabla u^2$
- force = $-E\nabla u$

Therefore...

• force =
$$-E \nabla u$$

$$\sigma = -E\epsilon$$

In 1D,
$$\varepsilon = \nabla u$$
.

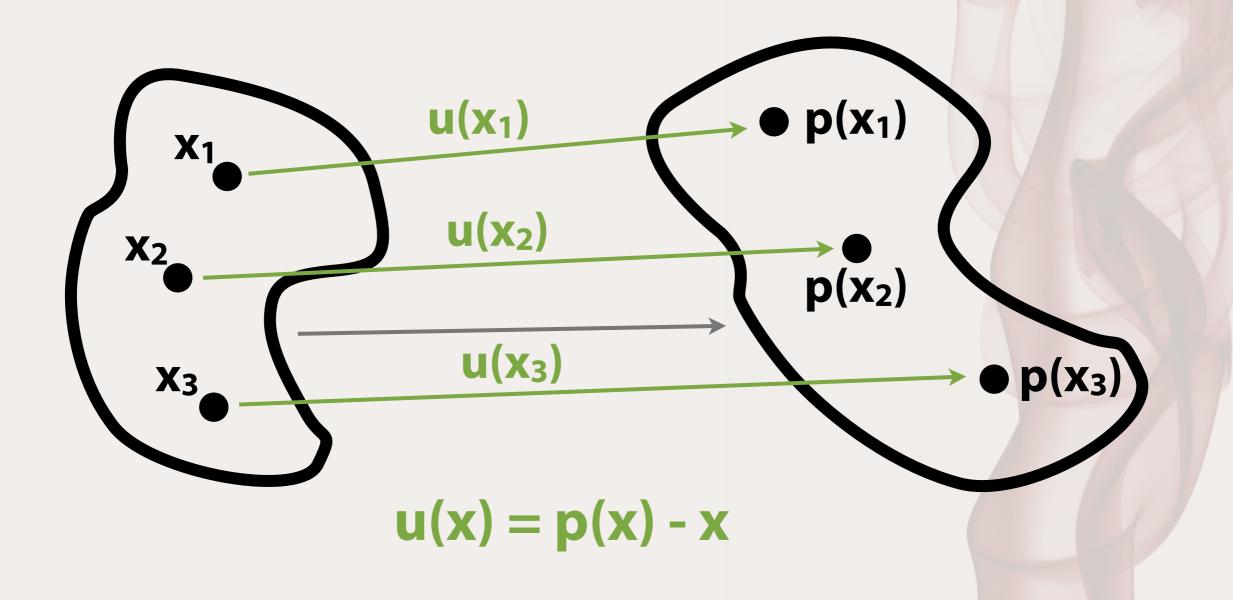
(Would like to generalize to 3D.)

Hooke's Law

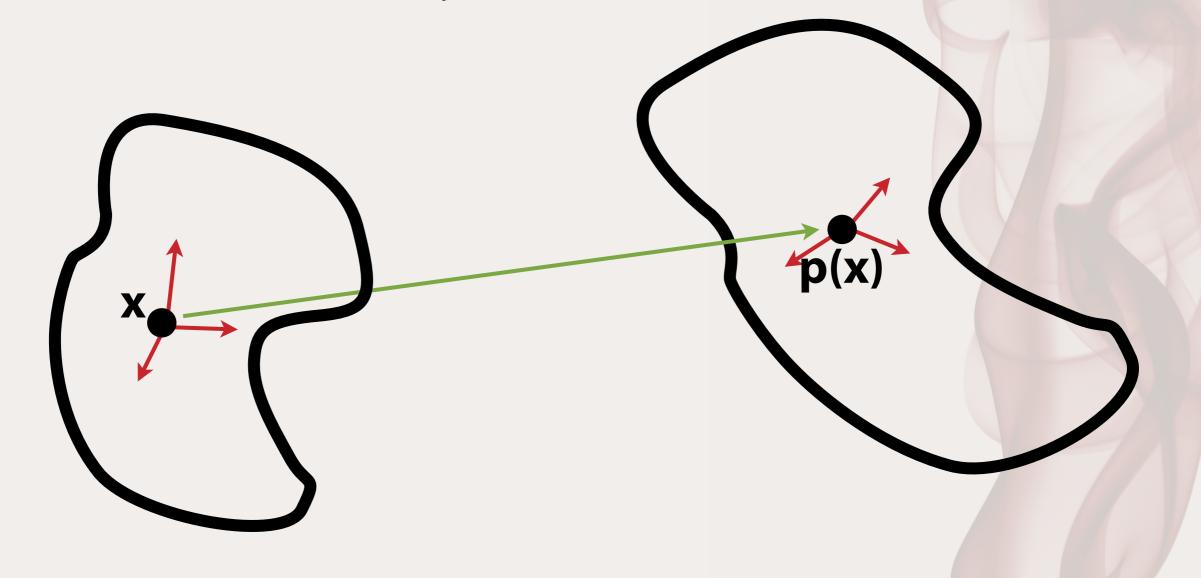
$$\sigma = -E\epsilon$$

- Want to generalize in two ways:
 - Continuum Deformations
 - 3D (things will get a little silly)

In 3D...



Coord Sys Transform



point: x

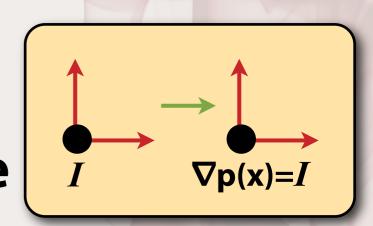
local coordinates: I

point: p(x)

local coordinates: ∇p

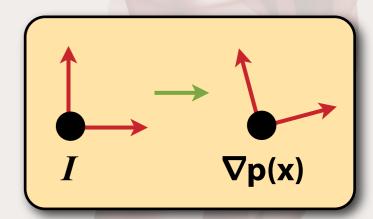
Defining Strain

- Strain is invariant to translation.
 - Ignore p(x)
 - Define in terms of local coordinate system transform: $\nabla p(x)$.



- Strain is invariant to rotation.
 - If $[\nabla p(x)]^T \nabla p(x) = I$,
 - Then ε=0

- $\varepsilon = \frac{1}{2}([\nabla p(x)]^T \nabla p(x) I)$
- 6 DOFs



$$egin{pmatrix} \epsilon = \left[egin{array}{cccc} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \ \epsilon_{xy} & \epsilon_{yy} & \epsilon_{yz} \ \epsilon_{xz} & \epsilon_{yz} & \epsilon_{zz} \end{array}
ight] \end{array}$$

Defining Strain

$$\epsilon = \frac{1}{2} \left[\nabla p(x) \right]^T \nabla p(x) - I$$

$$u(x) = p(x) - x$$

$$\nabla u(x) = \nabla p(x) - I$$

$$\epsilon = \frac{1}{2} \left[\nabla u(x) + I \right]^T \left[\nabla u(x) + I \right] - I$$

Green's Strain:

$$\epsilon_G = \frac{1}{2} \left(\nabla u + \left[\nabla u \right]^T + \left[\nabla u \right]^T \nabla u \right)$$

Cauchy's Strain:

$$\epsilon_C = \frac{1}{2} \left(\nabla u + [\nabla u]^T \right)$$
 (no rotation)

1D Strain:

$$\epsilon_{1D} = \nabla u$$

Defining Strain

$$\epsilon = \frac{1}{2} \left[\nabla p(x) \right]^T \nabla p(x) - I$$

$$u(x) = p(x) - x$$

$$\nabla u(x) = \nabla p(x) - I$$

$$\epsilon = \frac{1}{2} \left[\nabla u(x) + I \right]^T \left[\nabla u(x) + I \right] - I$$

Green's Strain:

$$\epsilon_G = \frac{1}{2} \left(\nabla u + \left[\nabla u \right]^T + \left[\nabla u \right]^T \nabla u \right)$$

Cauchy's Strain:

$$\epsilon_C = \frac{1}{2} \left(\nabla u + [\nabla u]^T \right)$$
 (no rotation)

1D Strain:

$$\epsilon_{1D} = \nabla u$$

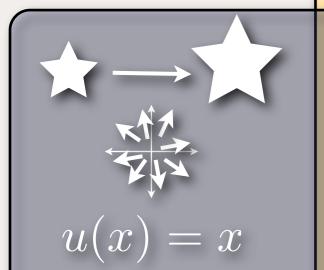
Cauchy's vs. Green's Strain

$$\epsilon_C = \frac{1}{2} \left(\nabla u + \left[\nabla u \right]^T \right)$$

Cauchy's Strain

$$\epsilon_C = \frac{1}{2} \left(\nabla u + \left[\nabla u \right]^T \right) \left(\epsilon_G = \frac{1}{2} \left(\nabla u + \left[\nabla u \right]^T + \left[\nabla u \right]^T \nabla u \right) \right)$$

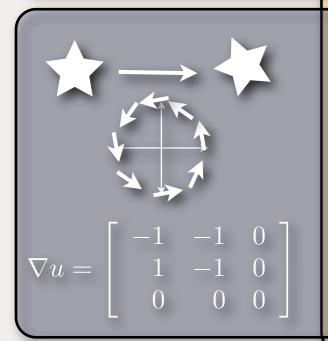
Green's Strain



 $\nabla u(x) = I$

$$\left[egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

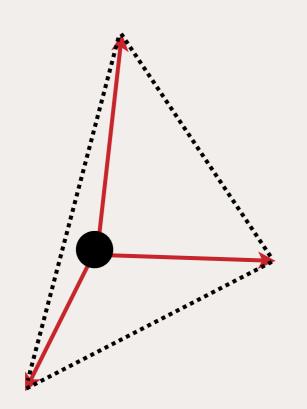
$$\frac{3}{2} \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

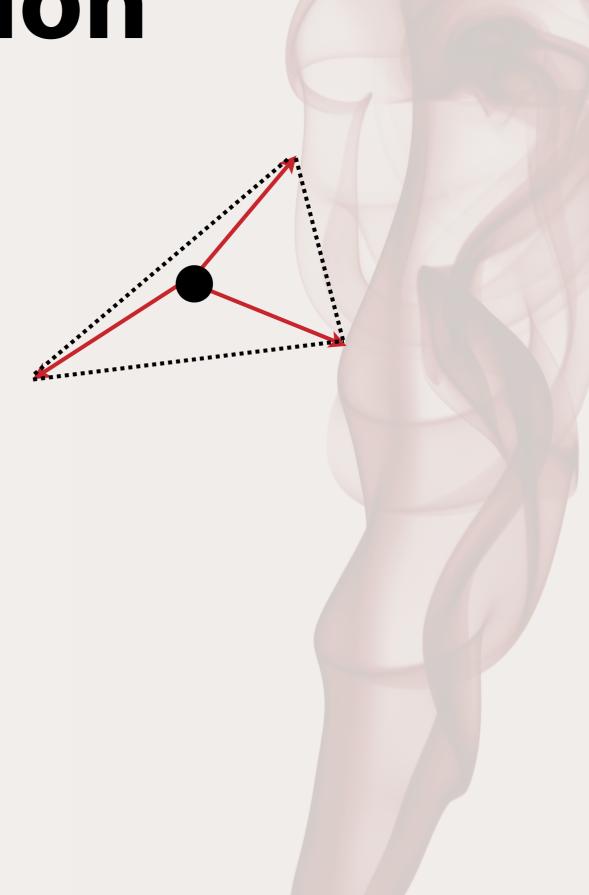


$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{bmatrix}$$

Question





Question

- How could we reduce the cost of simulation for a very finely discretized surface?
- Are there cheap ways of getting volumetric behavior without a full tetrahedralization?
- How can collision constraints be integrated?
- How to simulate plasticity?

Student Answers

• How could we reduce the cost of simulation for a very finely discretized surface?

- make a more coarse tetrahedral mesh, and then track the barycentric coordinates of the original mesh points
- then, just simulate the coarser mesh!
- how do we get the coarser mesh:
- for example, in planar (or low curvature) regions, use larger elements
- how can we "coalesce" tetrahedra into larger elements
- what other principles are there?
- if we can precompute (or if we just know) how some object reacts to forces
- we can use this proxy instead of the real thing!

• Are there cheap ways of getting volumetric behavior without a full tetrahedralization?

- use springs inside the mesh instead of doing the whole stress/strain thing
- forget the interior/ only simulate on the surface!!!
- ...and maybe we can even simulate the surface too
- maybe we can use angular springs
- build a "tree" of the structure : the mesh refines itself in areas of deformation

How can collision constraints be integrated?

- is there a local way (looking at deformation gradients) to detect self collisions?
- apply forces to points on the mesh (rather than the whole object itself)

How to simulate plasticity?

- non monotonically increasing stress-strain relationship!
- implementation: if it stresses (gradient of the displacement) too much, stop applying forces!