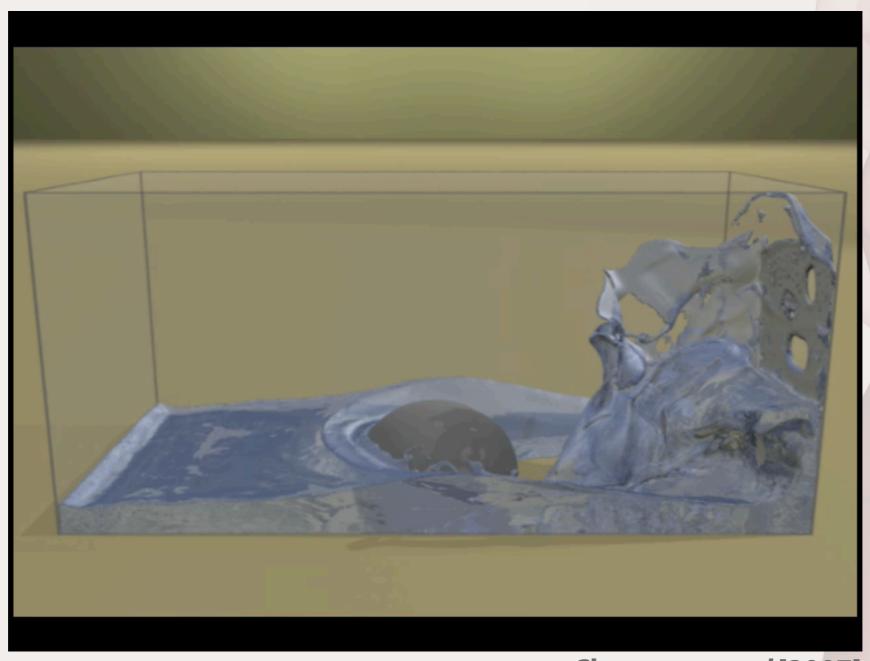
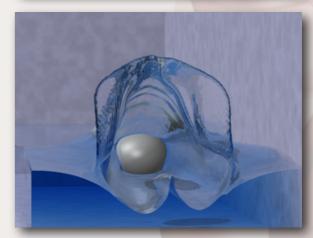
Free Surface Fluids

Adrien Treuille

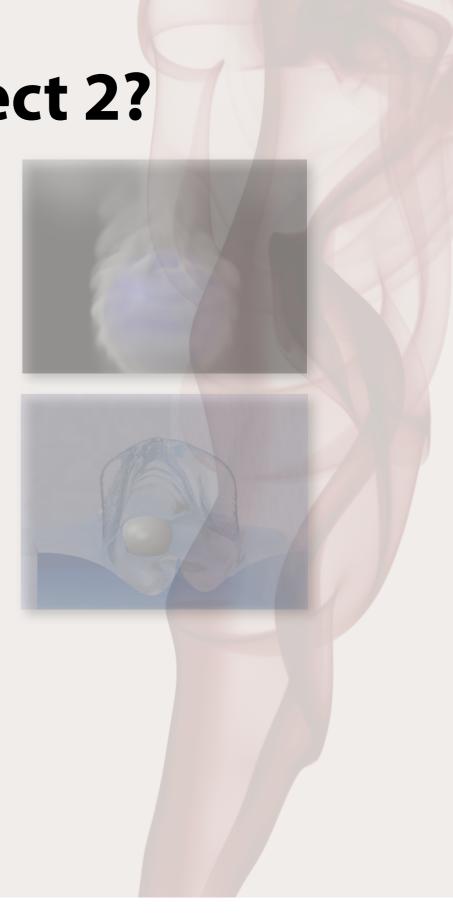


source: Chentanez et al [2007]

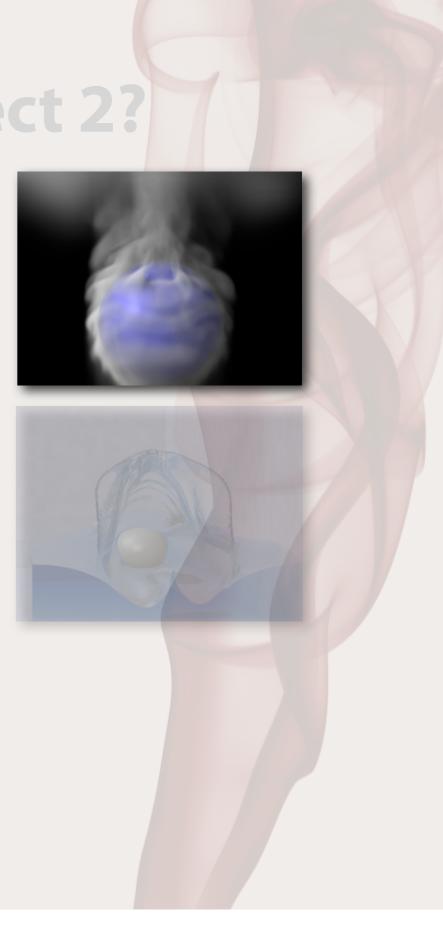
- Questions about project 2?
- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements



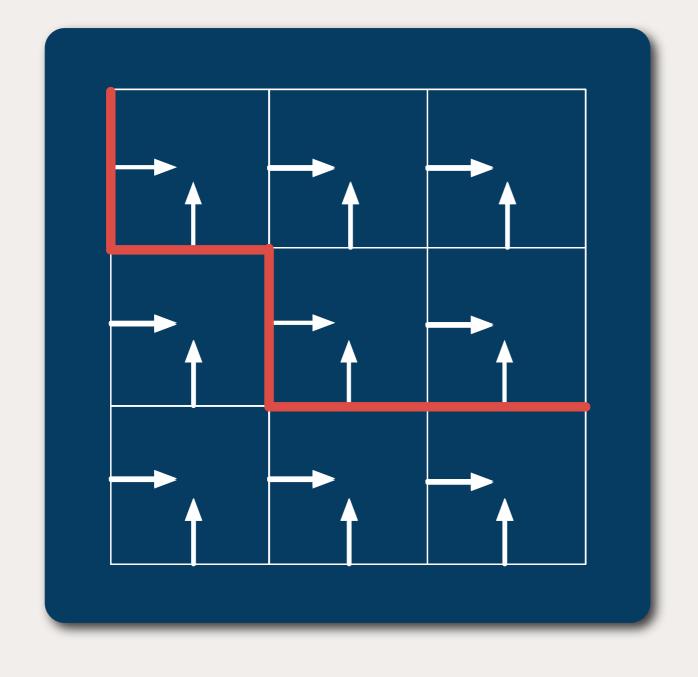
- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements



- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements



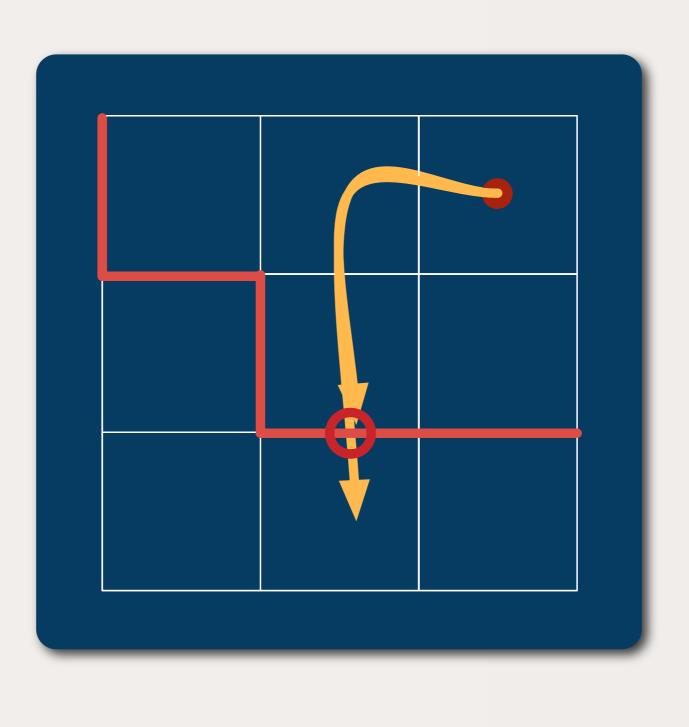
Solid Boundaries

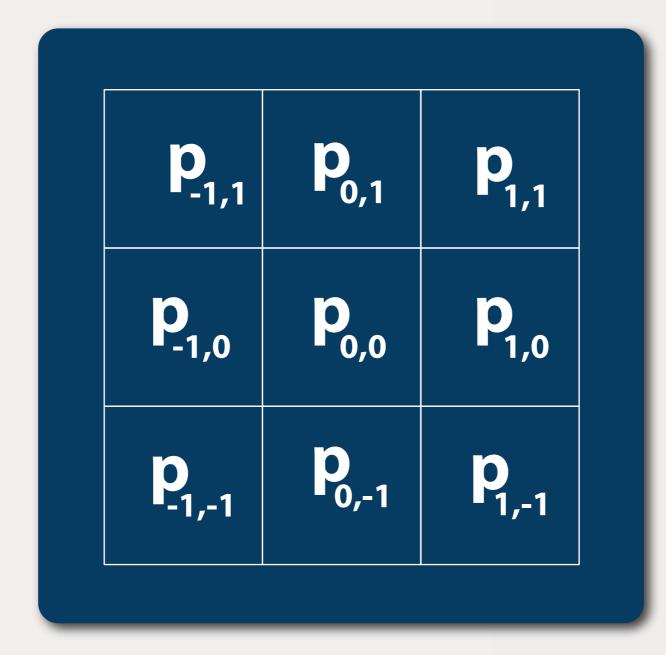


Condition: $u \cdot n = 0$

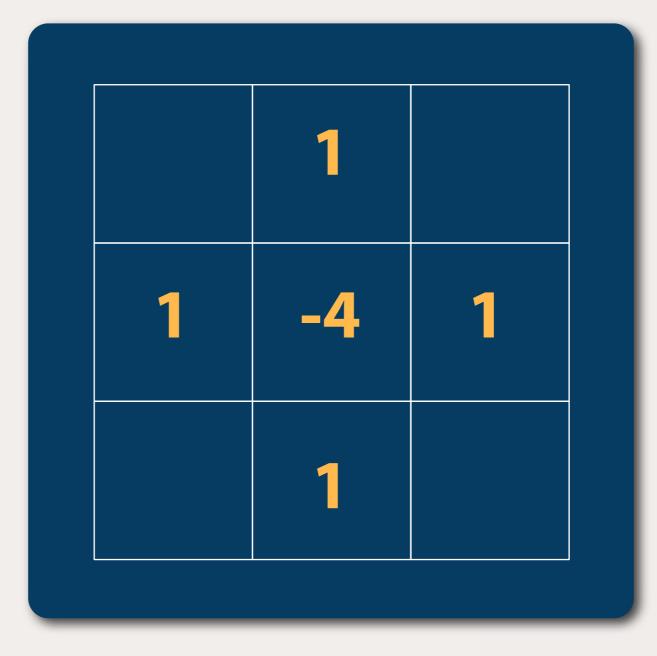
- How does this affect advection?
- How does this affect projection?

Path Clipping

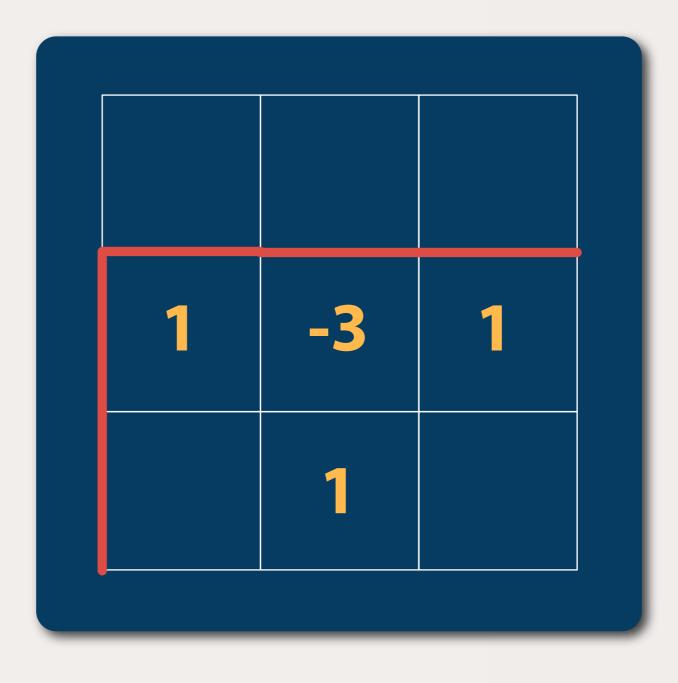




$$\nabla \mathbf{u}_{0,0} = p_{0,-1} + p_{0,1} + p_{-1,0} + p_{1,0} + 4p_{0,0}$$

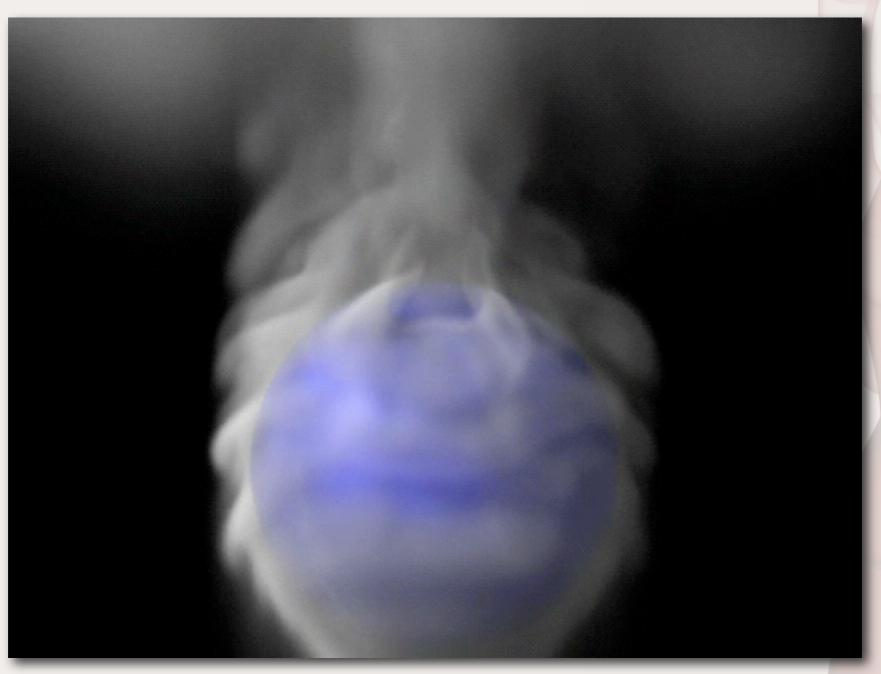


$$\nabla \mathbf{u}_{0,0} = p_{0,-1} + p_{0,1} + p_{-1,0} + p_{1,0} + 4p_{0,0}$$



$$\nabla \mathbf{u}_{0,0} = p_{0,-1} + p_{0,1} + p_{1,0} - 3p_{0,0}$$

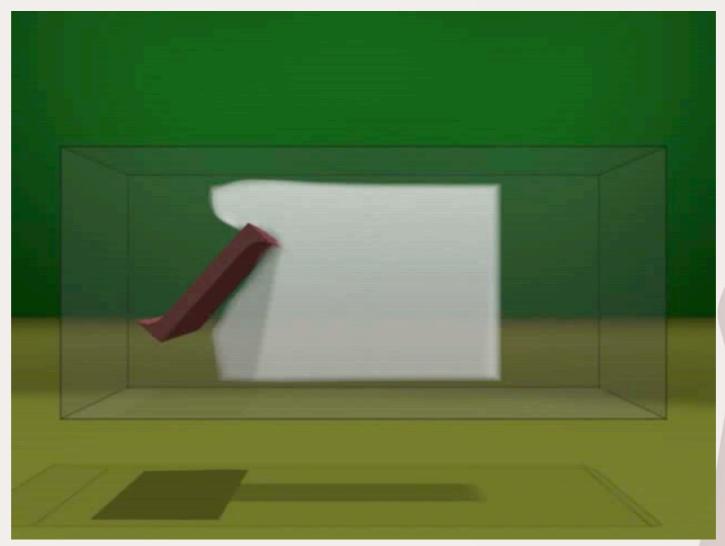
Example



source: Losasso, Gibou, and Fedkiw [2004]

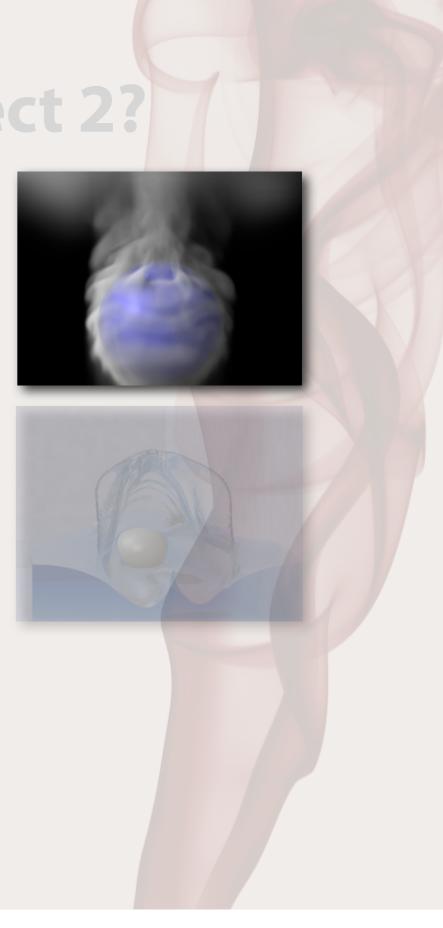
Question

- What about non-rectilinear boundaries?
 - Tetrahedral meshes.

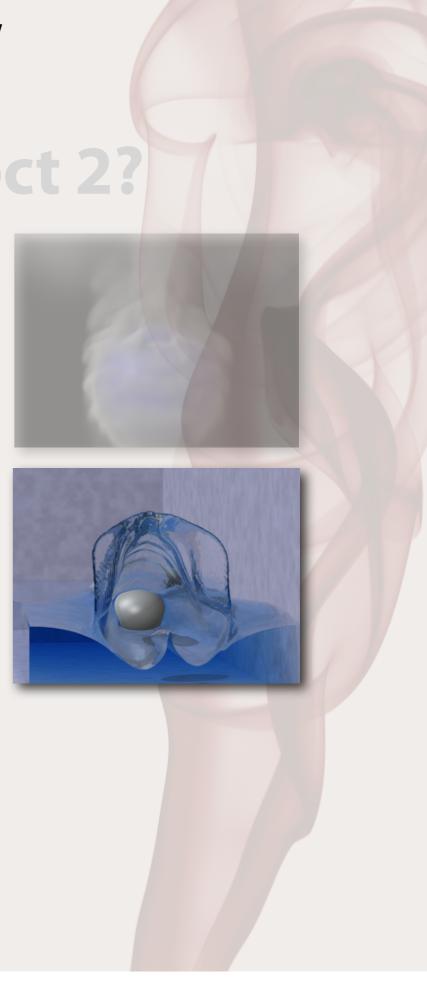


source: Feldman O'Brien and Klingner [2005]

- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements



- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements

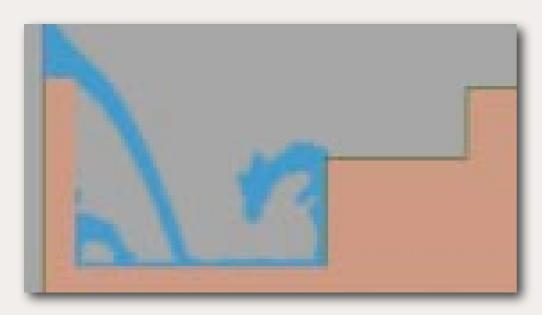


Free Surfaces

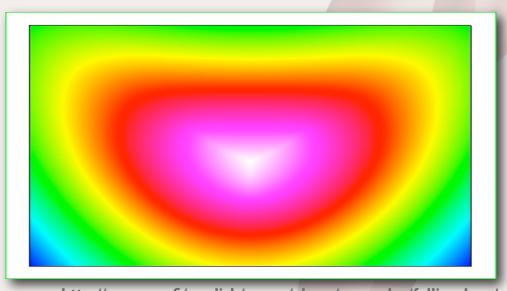
Surface between two fluids.

source: http://plus.maths.org/issue22/news/skimming/

Volume of Fluids

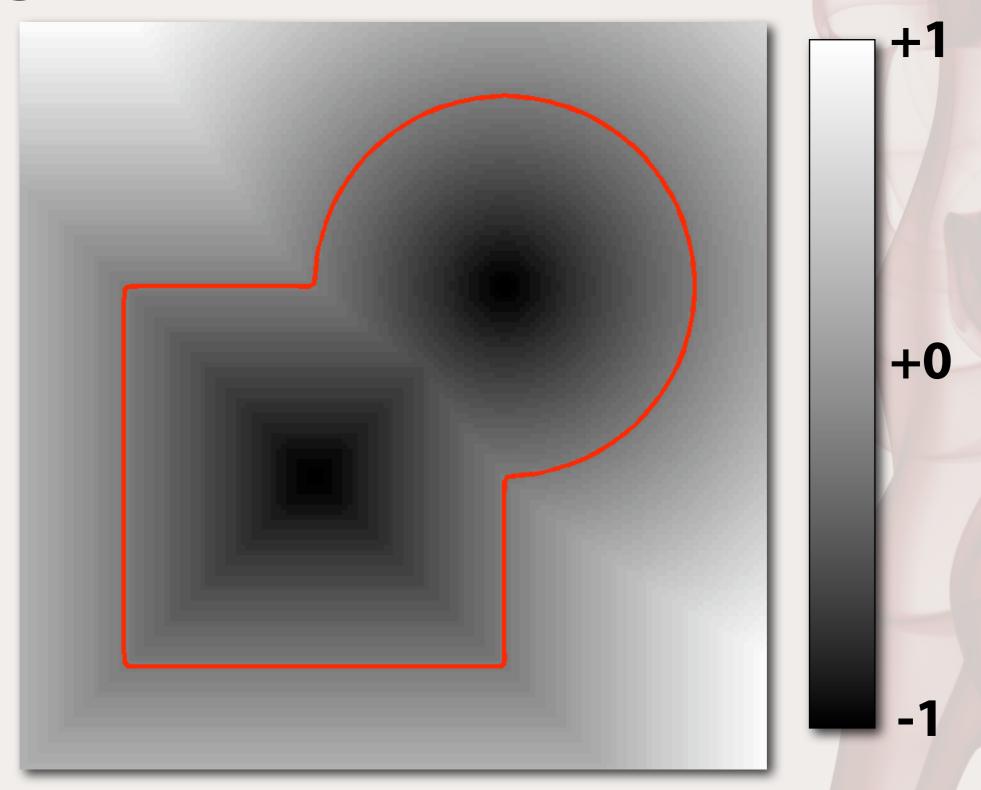


Signed Distance Function



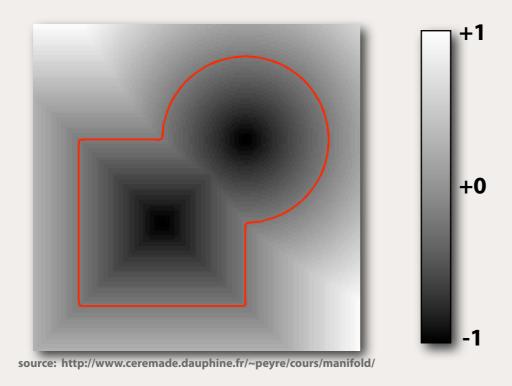
source: http://www.csc.fi/english/pages/elmer/examples/fallingdrop/

Signed Distance Function



source: http://www.ceremade.dauphine.fr/~peyre/cours/manifold/

Signed Distance Function



- Easy to know where water is.
- Good surface reconstruction: marching cubes algorithm.
- Advection OK!
- Must be redistanced:

$$\phi|_{\partial M} = 0 \quad ||\nabla \phi|| = 1$$

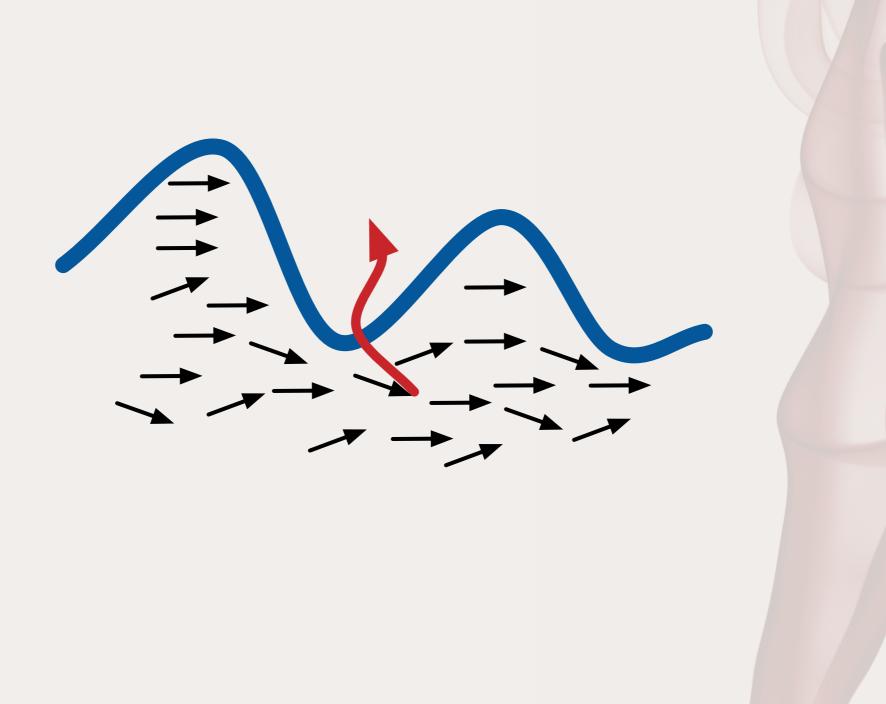
Signed Distance Questions

- How can we perform intersection?
- How can we perform union?

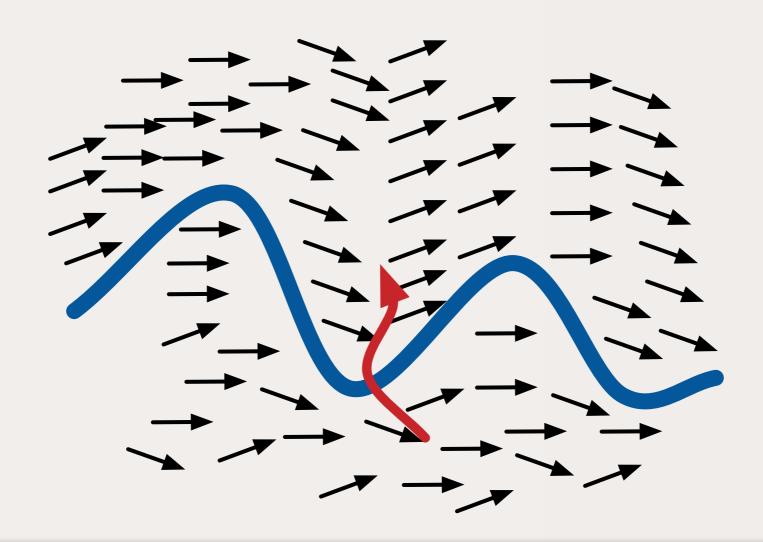
Liquid Simulation Issues

- How do we change the advection step?
- How do we change the projection step?

Path Clipping



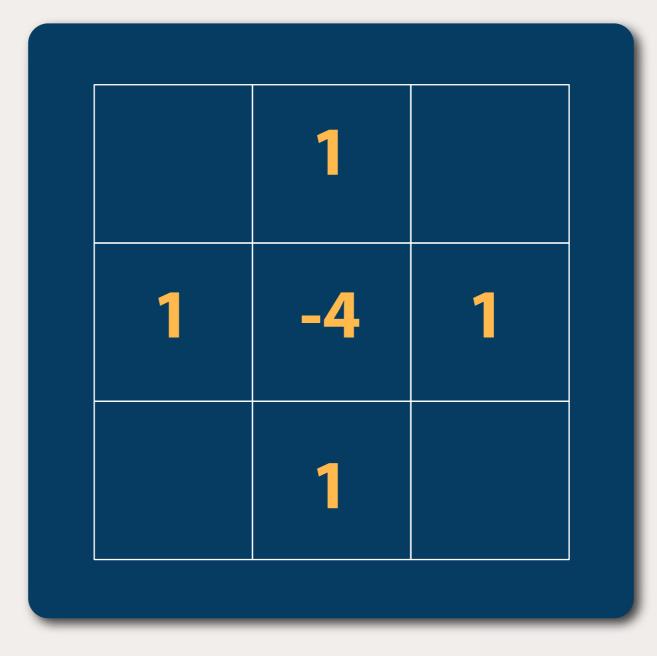
Velocity Extension



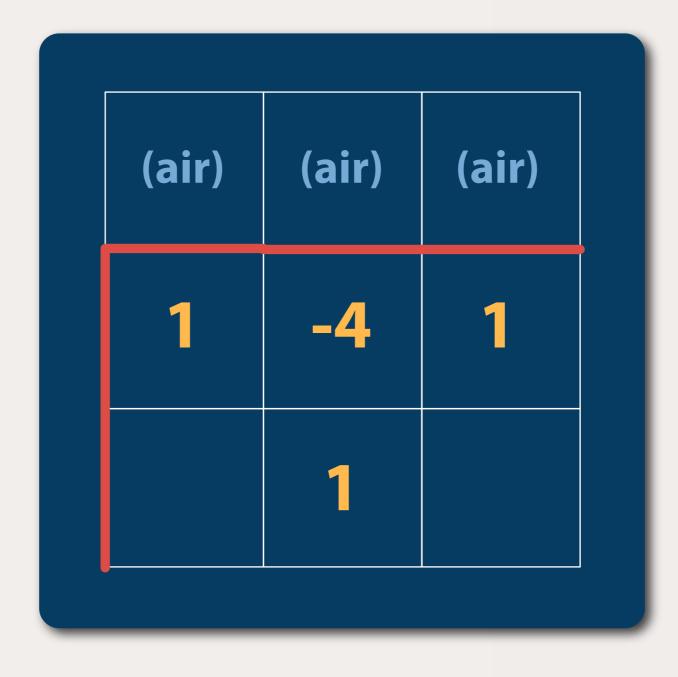
D. ADALSTEINSSON AND J. A. SETHIAN. The Fast

Construction of Extension Velocities in Level Set

Methods. Journal of Computational Physics [1999]

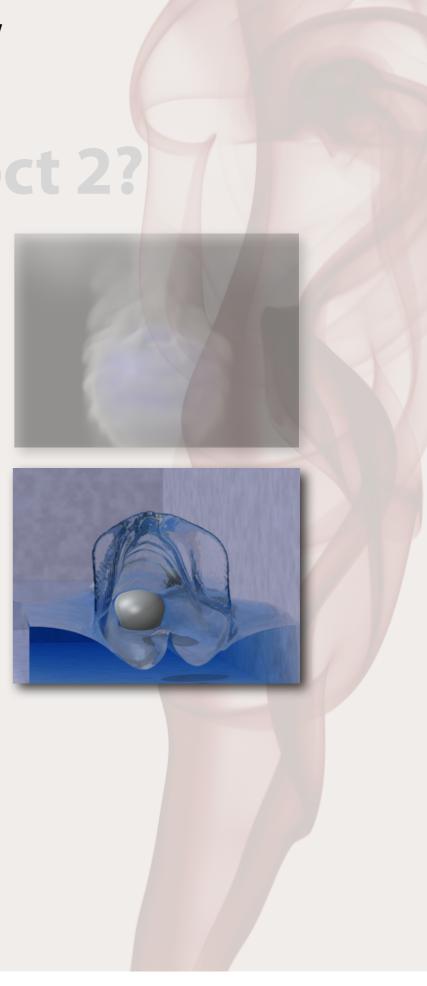


$$\nabla \mathbf{u}_{0,0} = p_{0,-1} + p_{0,1} + p_{-1,0} + p_{1,0} + 4p_{0,0}$$

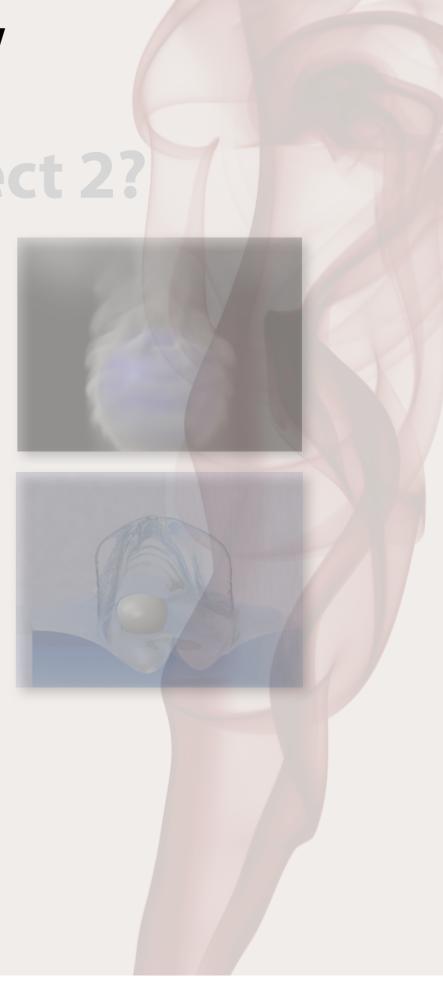


$$\nabla \mathbf{u}_{0,0} = p_{0,-1} + p_{0,1} + p_{1,0} - 4p_{0,0}$$

- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements

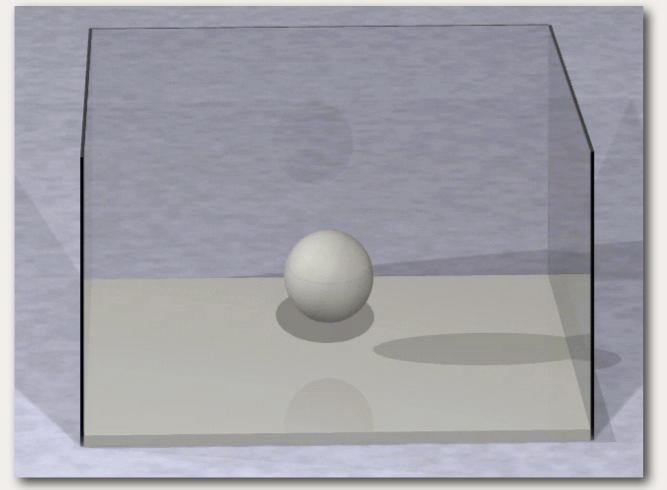


- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements



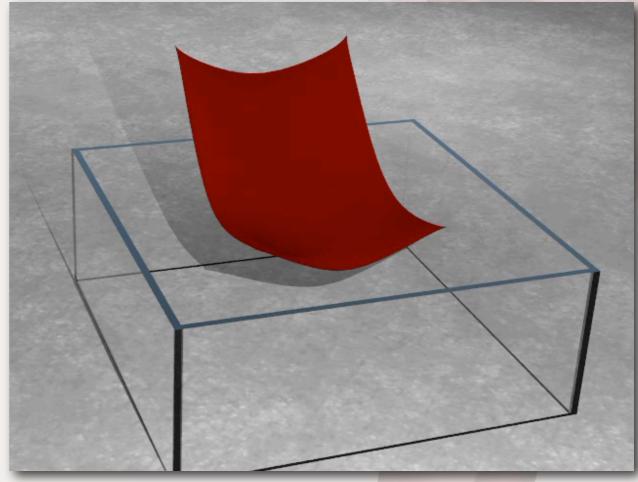
Resolving Small Features

Quad Trees



source: Losasso, Gibou, and Fedkiw [2004]

Particles

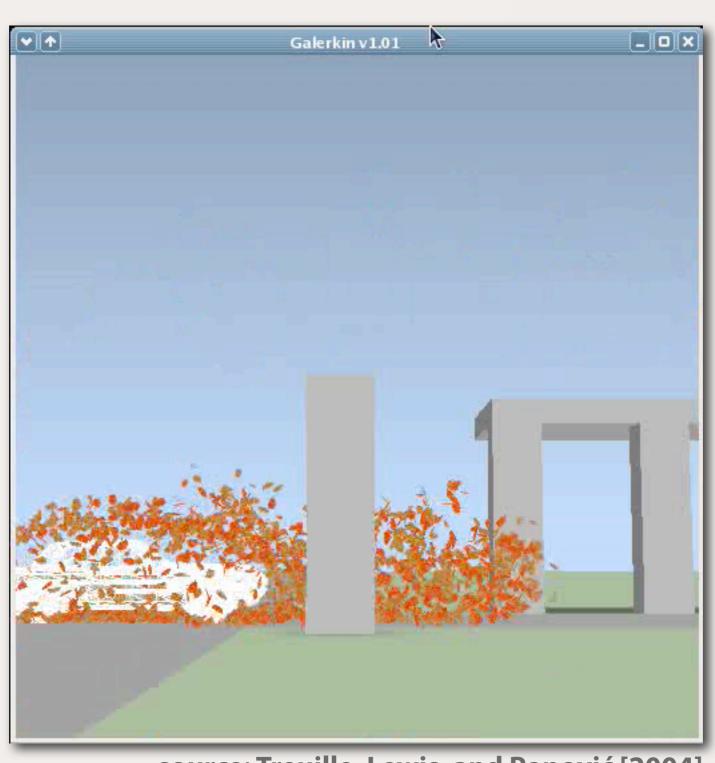


source: Guendelman et. al. [2005]

Coupling

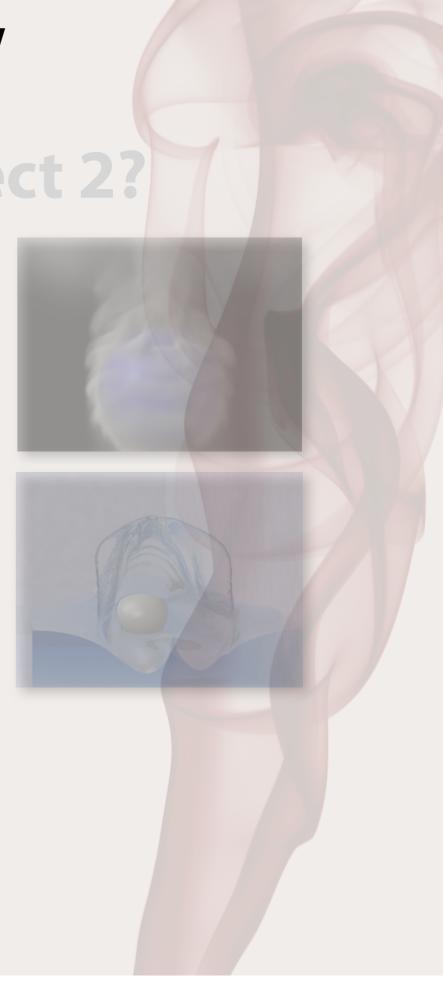
source: Carlson, Mucha, and Turk [2004]

Real-time



source: Treuille, Lewis, and Popović [2004]

- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements



- Solid Boundaries.
 - Affect on the advection step?
 - Affect on the projection step?
- Free-surfaces.
 - Affect on the advection step?
 - Affect on the projection step?
- Open Challenges
- Closing Statements

Closing Statements Next Wednesday's class.

- Question:
 - How can we preserve volume?

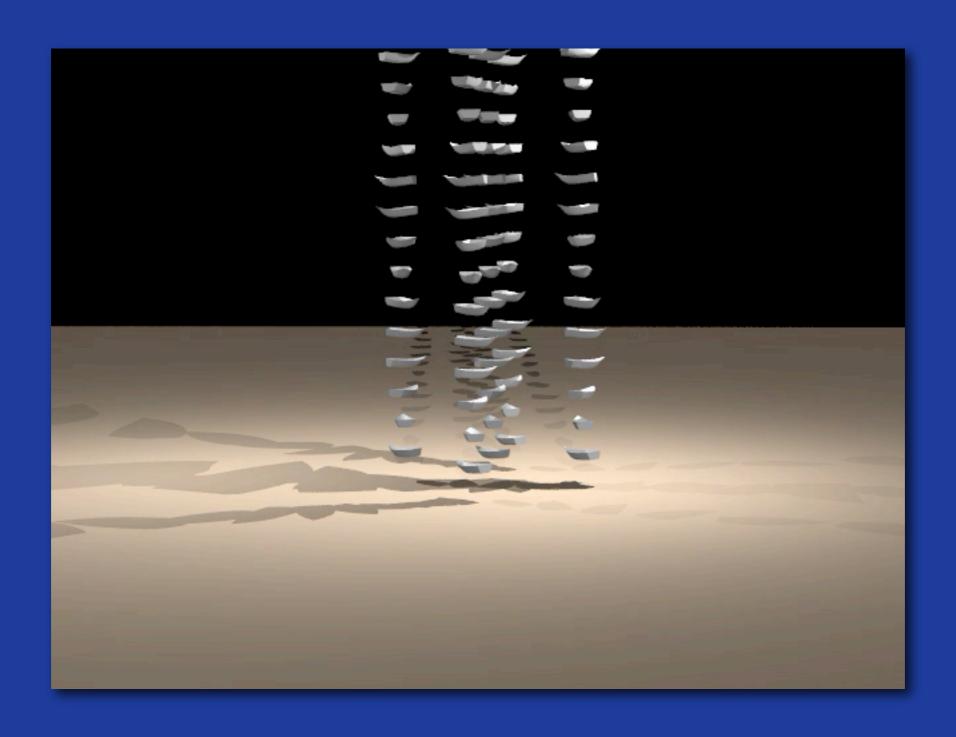
Rigid Body Dynamics

Rigid Body Dynamics

Rigid Body Dynamics David Baraff ANIMATION STUDIOS

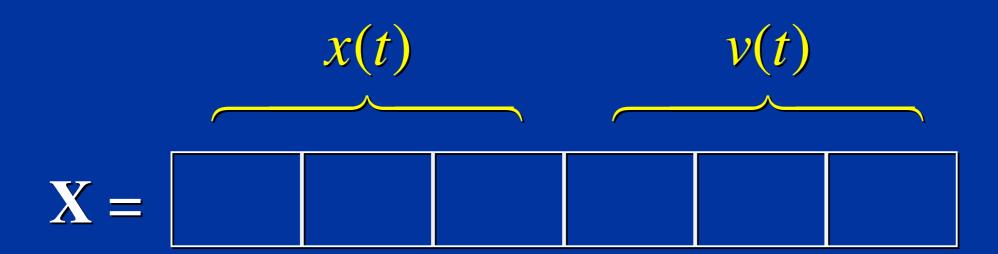
SIGGRAPH 2001 COURSE NOTES SF1 PHYSICALLY BASED MODELING

What is a Rigid Body?



Particle State

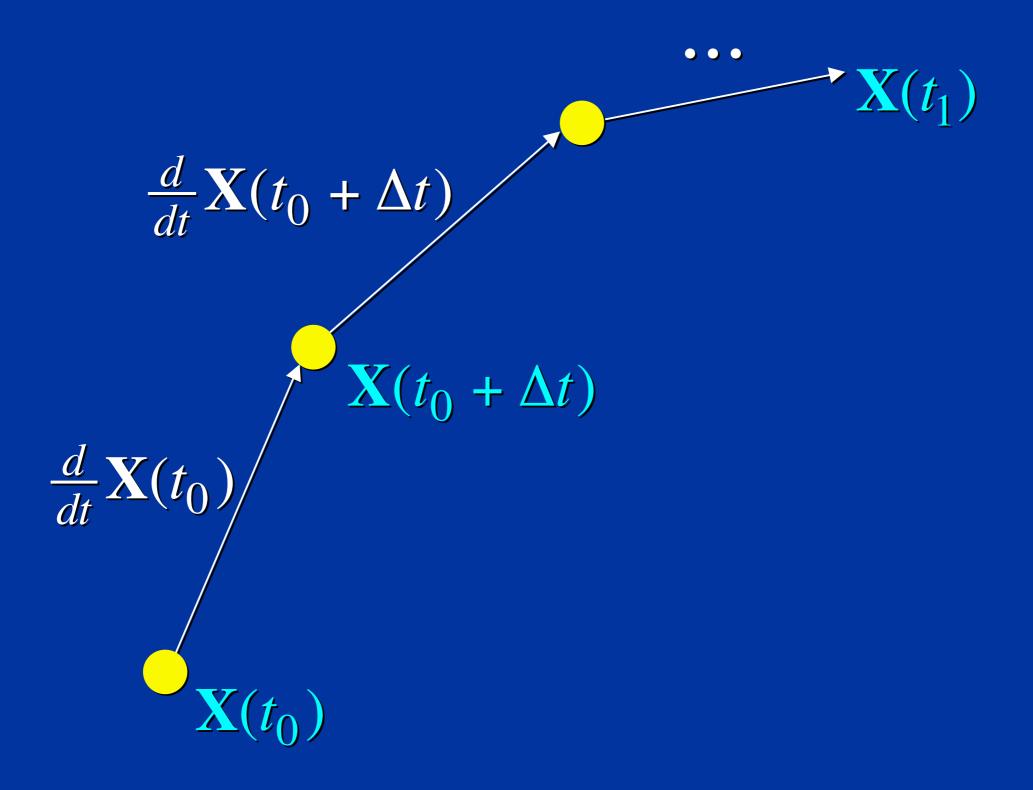
$$\mathbf{X}(t) = \begin{pmatrix} x(t) \\ v(t) \end{pmatrix}$$

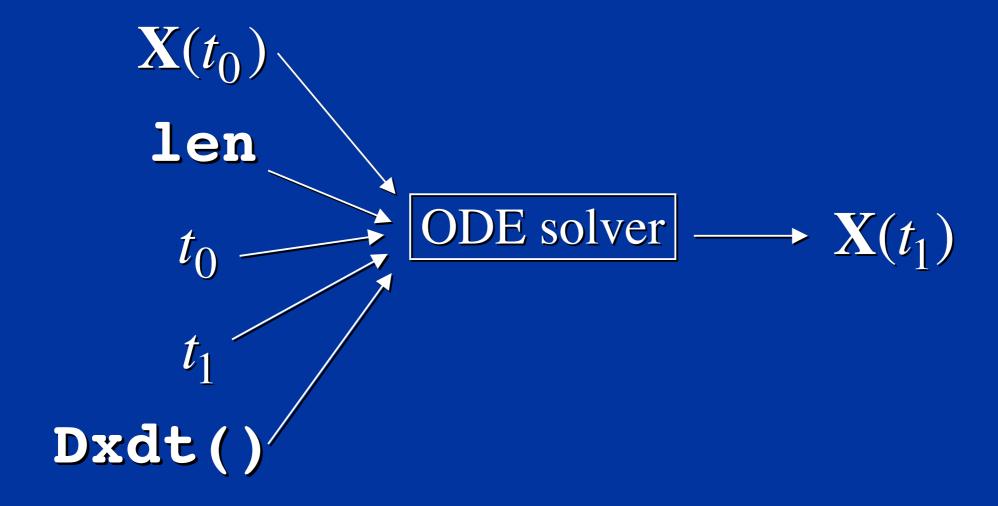


State Derivative

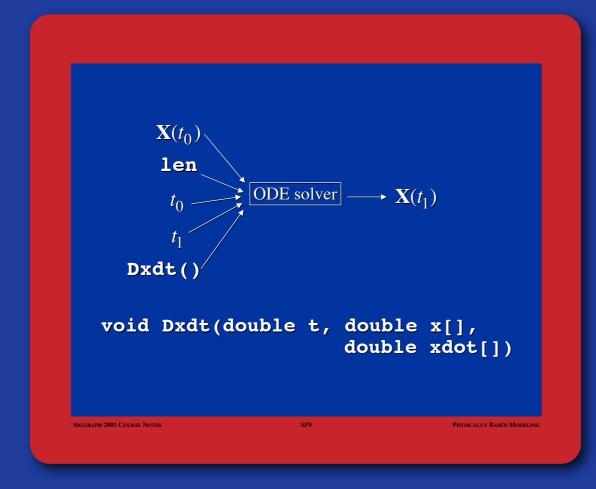
$$\frac{d}{dt}\mathbf{X} = \frac{d}{dt} \begin{pmatrix} x_1(t) \\ v_1(t) \\ \vdots \\ x_n(t) \\ v_n(t) \end{pmatrix} = \begin{pmatrix} v_1(t) \\ F_1(t)/m_1 \\ \vdots \\ v_n(t) \\ F_n(t)/m_n \end{pmatrix}$$

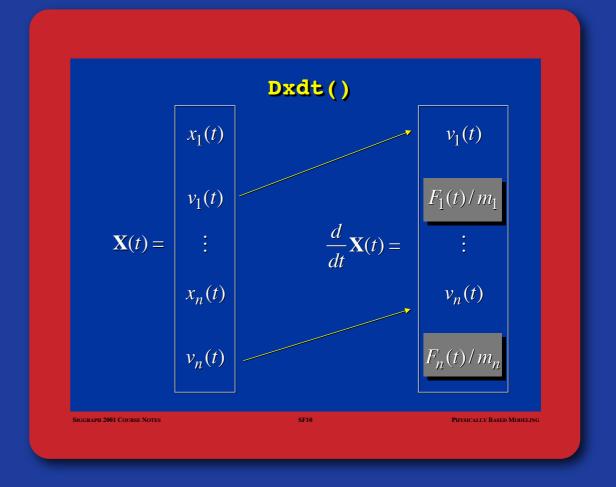
ODE solution



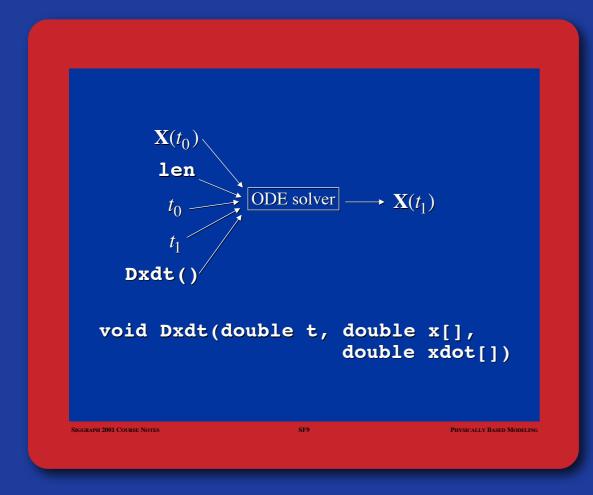


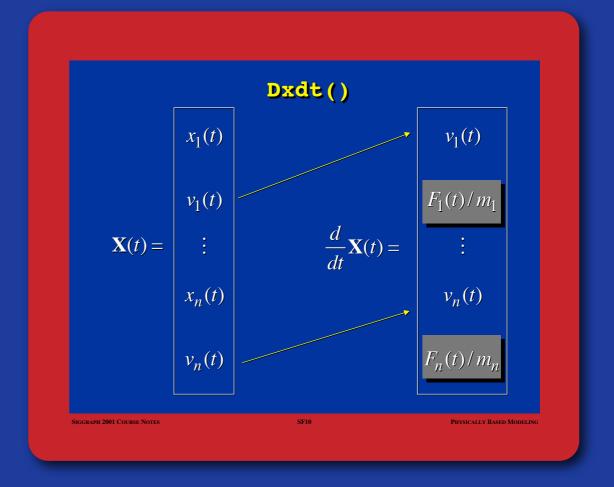
What We Have





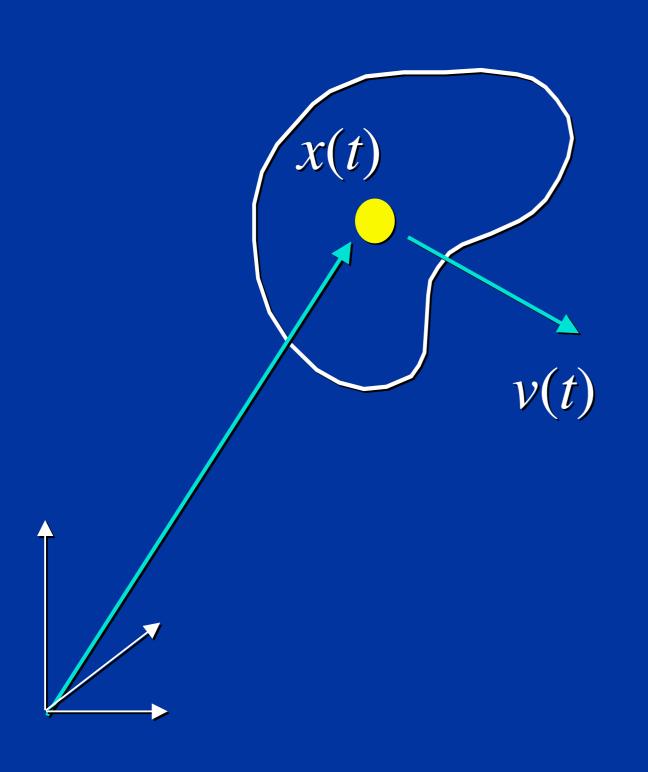
Our Goal





Replicate this approach for rigid bodies.

Rigid Body State



$$\mathbf{X}(t) = \begin{pmatrix} x(t) \\ ? \\ v(t) \\ ? \end{pmatrix}$$

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ \vdots \\ Mv(t) \\ ? \end{pmatrix} = \begin{pmatrix} \mathbf{?} \\ \mathbf{?} \\ \vdots \\ \mathbf{?} \end{pmatrix}$$

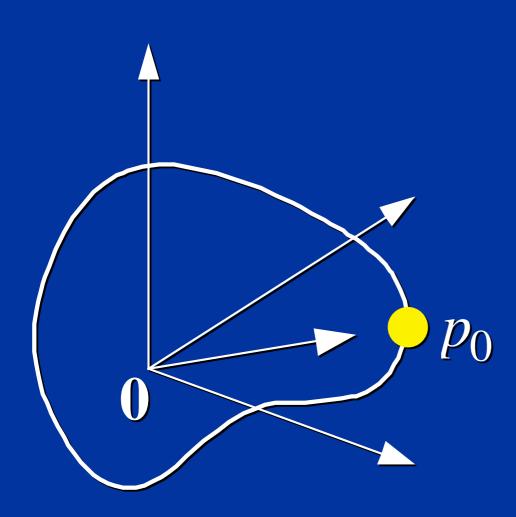
- Use Momentum P=Mv instead of just v.
- What is this?

Orientation

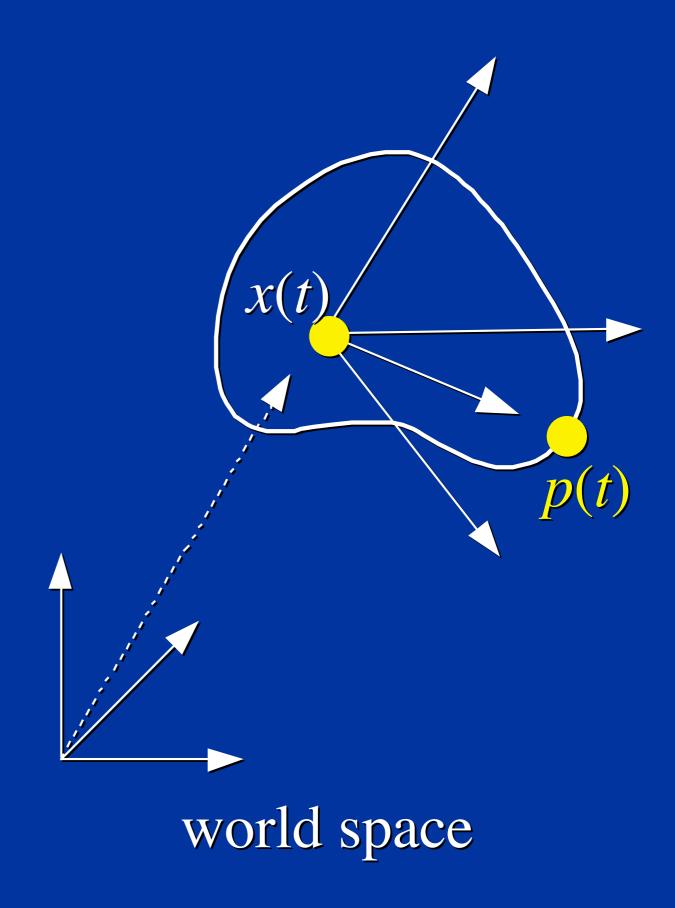
We represent orientation as a rotation matrix R(t). Points are transformed from body-space to world-space as:

$$p(t) = \mathbf{R}(t)p_0 + x(t)$$

He's lying. Actually, we use quaternions.



body space

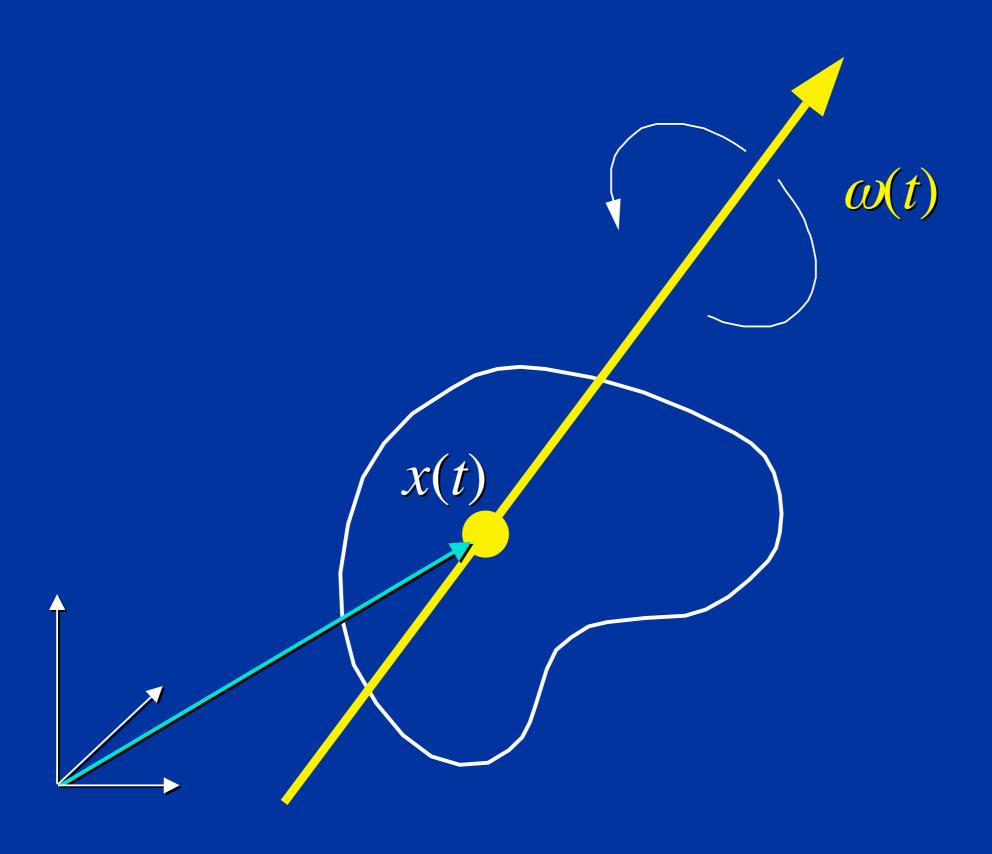


Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ Mv(t) \\ ? \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ \end{pmatrix}$$

What is this?

Angular Velocity Definition

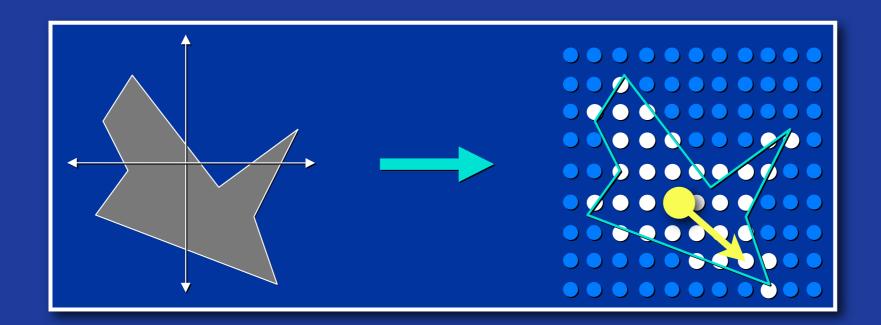


Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ Mv(t) \\ \omega(t) \end{pmatrix} = \begin{pmatrix} \mathbf{?} \\ \mathbf{?} \\ \end{pmatrix}$$

What is this?

Discretized View



Total Mass:

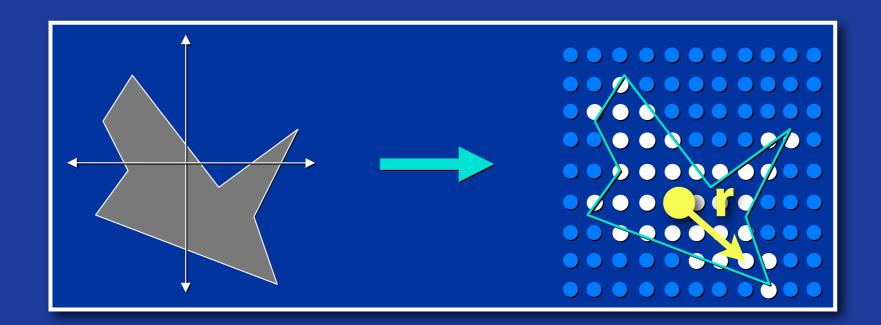
$$M = \sum_{i} m_{i}$$

Center of Mass:

$$\bar{\mathbf{x}} = \frac{1}{M} \sum_{i} m_i \mathbf{x}_i$$

• Relative Position: $\mathbf{r}_i = \mathbf{x}_i - \bar{\mathbf{x}}$

Discretized View



- Basic Principles:
 - Conservation of Linear Momentum

$$\frac{d}{dt} \sum_{i} m_i \dot{\mathbf{x}}_i = 0$$

Conservation of Angular Momentum

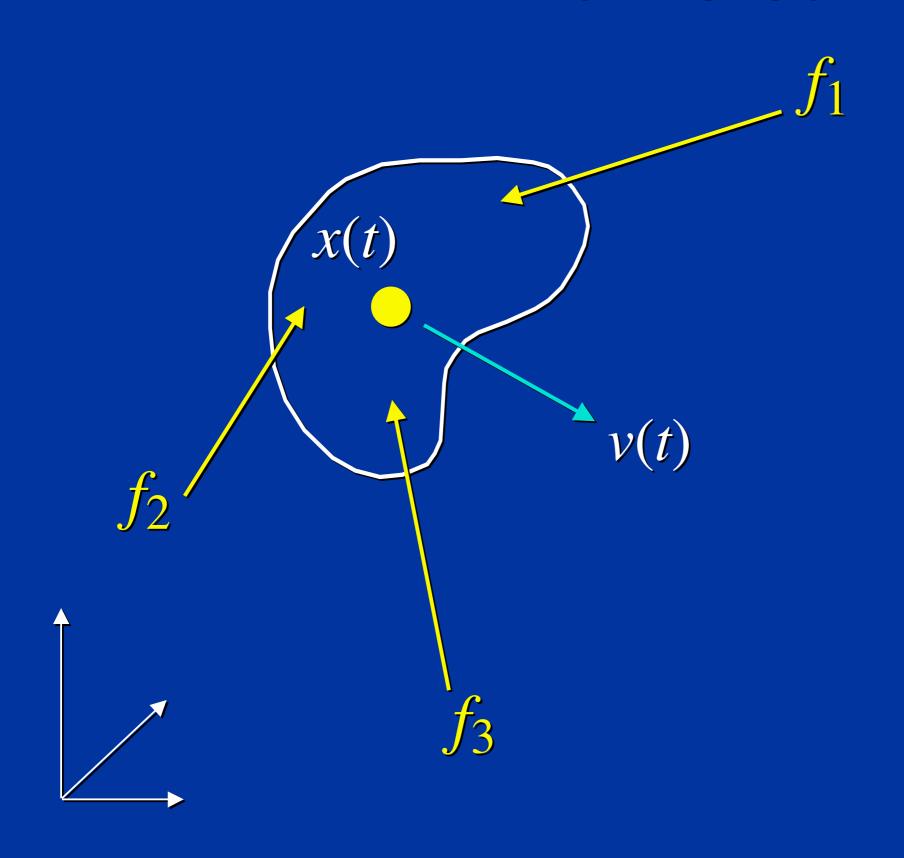
$$\frac{d}{dt} \sum_{i} m_i \mathbf{r}_i \times \dot{\mathbf{x}}_i = 0$$

Conservation and Forces

Linear Momentum

$$egin{aligned} rac{d}{dt} \sum_{i} m_{i} \dot{\mathbf{x}}_{i} &= \sum_{i} \mathbf{f}_{i} \ \sum_{i} m_{i} \ddot{\mathbf{x}}_{i} &= \mathbf{F} \end{aligned}$$
 $egin{aligned} \left(\bar{\mathbf{x}} = rac{1}{M} \sum_{i} m_{i} \mathbf{x}_{i}
ight) \ \left(M \ddot{\ddot{\mathbf{x}}} &= \sum_{i} m_{i} \ddot{\mathbf{x}}_{i}
ight) \end{aligned}$
 $M \ddot{\ddot{\mathbf{x}}} = \mathbf{F}$

Net Force



$$F(t) = \sum f_i$$

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ Mv(t) \\ \omega(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \mathbf{P}(t) \\ F(t) \\ \mathbf{P}(t) \\ \mathbf{P}(t)$$

What are these?

Angular Velocity

We represent angular velocity as a vector $\omega(t)$, which encodes both the axis of the spin and the speed of the spin.

How are R(t) and $\omega(t)$ related?

Angular Velocity

 $\mathbf{R}(t)$ and $\omega(t)$ are related by:

$$\frac{d}{dt}\mathbf{R}(t) = \begin{pmatrix} 0 & -\omega_z(t) & \omega_y(t) \\ \omega_z(t) & 0 & -\omega_x(t) \\ -\omega_y(t) & \omega_x(t) & 0 \end{pmatrix} \mathbf{R}(t)$$

$$= \omega(t)^* \mathbf{R}(t)$$

 w^* can be viewed as the matrix form of -(w imes)

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ \mathbf{R}(t) \\ Mv(t) \\ \langle \omega(t) \rangle \end{pmatrix} = \begin{pmatrix} v(t) \\ \omega(t)^* \mathbf{R}(t) \\ F(t) \\ ? \end{pmatrix}$$

Need to relate $\omega(t)$ and mass distribution to F(t).

Conservation and Forces

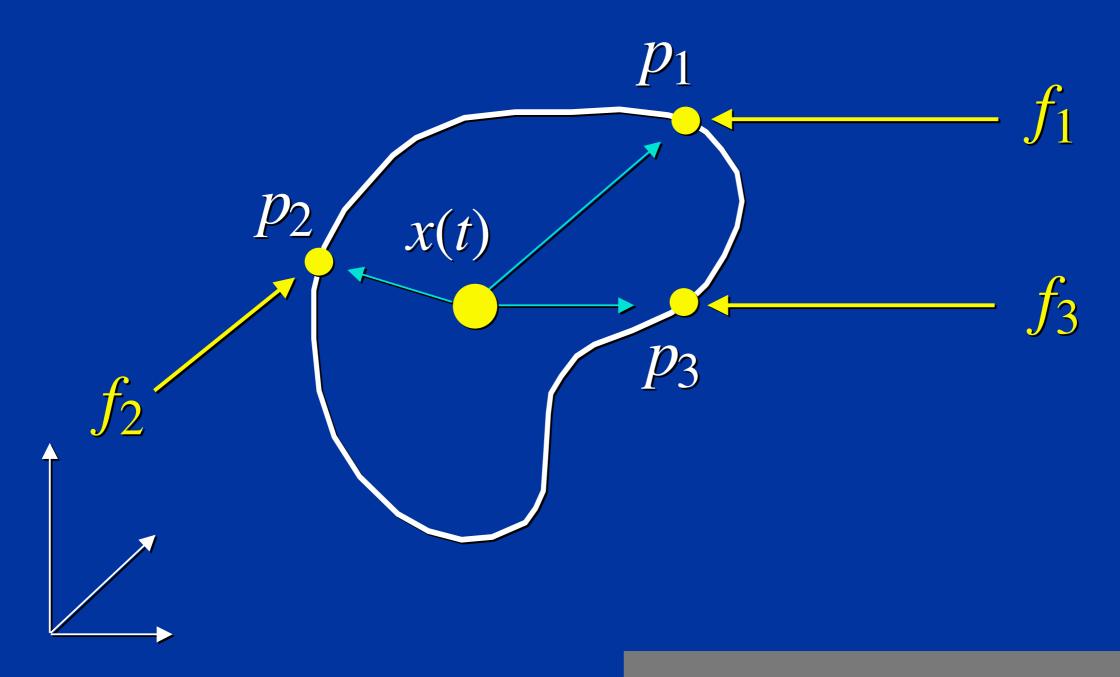
Linear Momentum

$$egin{aligned} rac{d}{dt} \sum_{i} m_{i} \dot{\mathbf{x}}_{i} &= \sum_{i} \mathbf{f}_{i} \ \sum_{i} m_{i} \ddot{\mathbf{x}}_{i} &= \mathbf{F} \end{aligned}$$
 $egin{aligned} \left(\bar{\mathbf{x}} = rac{1}{M} \sum_{i} m_{i} \mathbf{x}_{i}
ight) \ \left(M \ddot{\ddot{\mathbf{x}}} = \sum_{i} m_{i} \ddot{\mathbf{x}}_{i}
ight) \end{aligned}$
 $M \ddot{\ddot{\mathbf{x}}} = \mathbf{F}$

Angular Momentum

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{x}}_{i} = \sum_{i} \mathbf{r}_{i} \times \mathbf{f}_{i}$$

Net Torque



$$\tau(t) = \sum (p_i - x(t)) \times f_i$$

Conservation and Forces

Linear Momentum

$$egin{aligned} rac{d}{dt} \sum_{i} m_{i} \dot{\mathbf{x}}_{i} &= \sum_{i} \mathbf{f}_{i} \ \sum_{i} m_{i} \ddot{\mathbf{x}}_{i} &= \mathbf{F} \end{aligned}$$
 $\left(ar{\mathbf{x}} = rac{1}{M} \sum_{i} m_{i} \mathbf{x}_{i}
ight)$
 $\left(M\ddot{\ddot{\mathbf{x}}} = \sum_{i} m_{i} \ddot{\mathbf{x}}_{i}
ight)$
 $M\ddot{\ddot{\mathbf{x}}} = \mathbf{F}$

Angular Momentum

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{x}}_{i} = \sum_{i} \mathbf{r}_{i} \times \mathbf{f}_{i}$$

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{x}}_{i} = \tau$$

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i} \times \omega \times \mathbf{r}_{i} = \tau$$

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i}^{*} \mathbf{r}_{i}^{*} \omega = \tau$$

Discrete Inertia

$$I = \sum_{i} m_i \mathbf{r}_i^* \mathbf{r}_i^*$$

$$I = \sum_{i} \left(m_{i} \begin{bmatrix} -y^{2} - z^{2} & xy & xz \\ xy & -x^{2} - z^{2} & yz \\ xz & yz & -x^{2} - y^{2} \end{bmatrix} \right)$$

Conservation and Forces

Linear Momentum

$$egin{aligned} rac{d}{dt} \sum_{i} m_{i} \dot{\mathbf{x}}_{i} &= \sum_{i} \mathbf{f}_{i} \ \sum_{i} m_{i} \ddot{\mathbf{x}}_{i} &= \mathbf{F} \end{aligned}$$
 $\left(ar{\mathbf{x}} = rac{1}{M} \sum_{i} m_{i} \mathbf{x}_{i}
ight)$
 $\left(M\ddot{\ddot{\mathbf{x}}} = \sum_{i} m_{i} \ddot{\mathbf{x}}_{i}
ight)$
 $M\ddot{\ddot{\mathbf{x}}} = \mathbf{F}$

Angular Momentum

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{x}}_{i} = \sum_{i} \mathbf{r}_{i} \times \mathbf{f}_{i}$$

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{x}}_{i} = \tau$$

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i} \times \omega \times \mathbf{r}_{i} = \tau$$

$$\frac{d}{dt} \sum_{i} m_{i} \mathbf{r}_{i}^{*} \mathbf{r}_{i}^{*} \omega = \tau$$

$$\frac{d}{dt} I \omega = \tau$$

Rigid Body Equation of Motion

$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ \mathbf{R}(t) \\ Mv(t) \\ \mathbf{I}(t)\omega(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \omega(t)^*\mathbf{R}(t) \\ F(t) \\ \tau(t) \end{pmatrix}$$

P(t) – linear momentum

L(t) – angular momentum

Discrete Inertia

$$I = \sum_{i} m_i \mathbf{r}_i^* \mathbf{r}_i^*$$

$$I = \sum_{i} \left(m_{i} \begin{bmatrix} -y^{2} - z^{2} & xy & xz \\ xy & -x^{2} - z^{2} & yz \\ xz & yz & -x^{2} - y^{2} \end{bmatrix} \right)$$

Continuous Inertia

$$\mathbf{I}(t) = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$

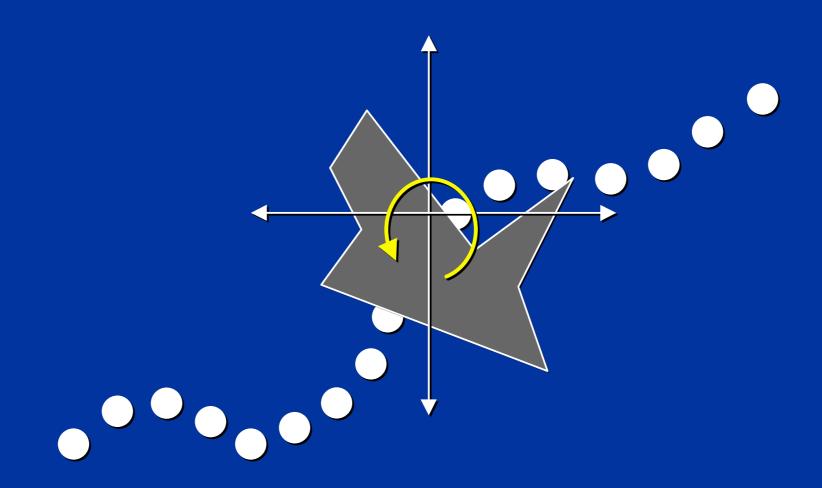
diagonal terms

$$I_{xx} = M \int_{V} (y^2 + z^2) dV$$

off-diagonal terms

$$I_{xy} = -M \int_{V} xy \, dV$$

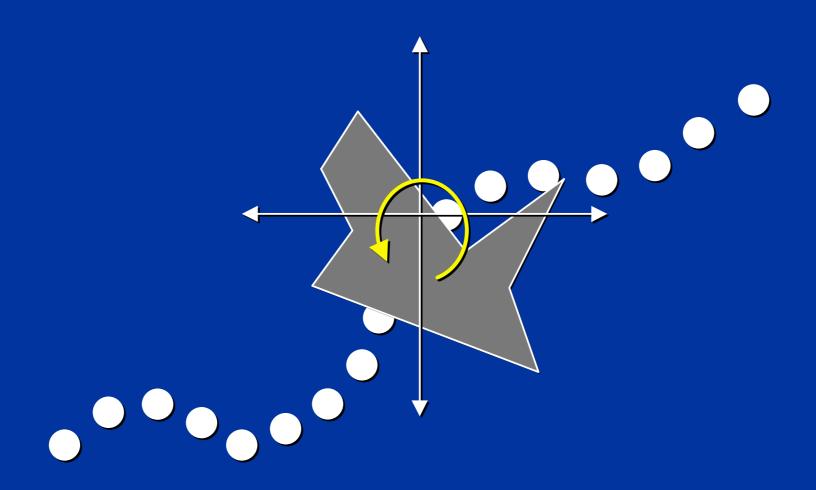
Inertia Tensors Vary in World Space...



$$I_{xx} = M \int_{V} (y^2 + z^2) dV$$

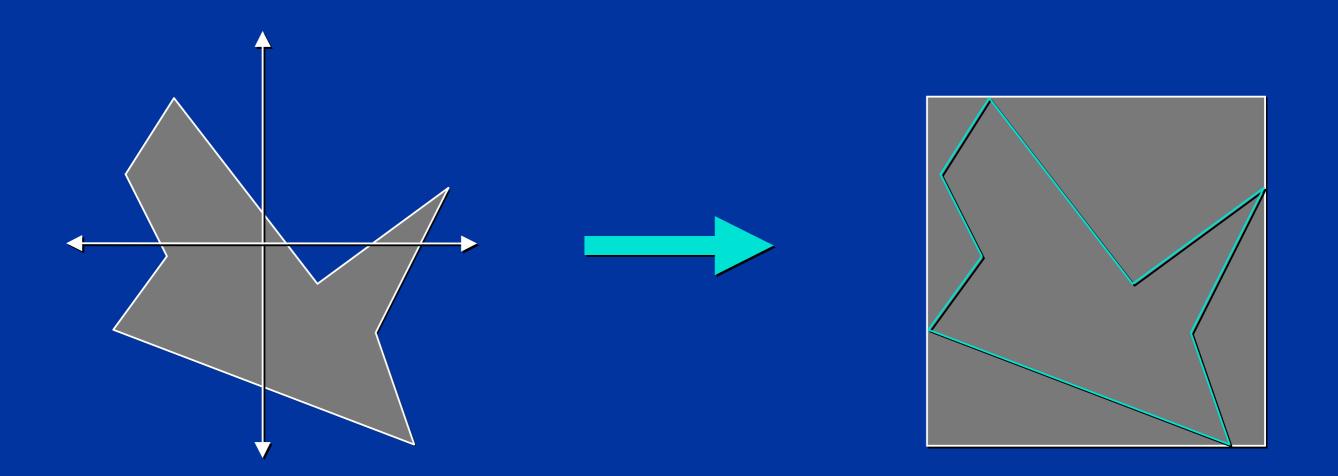
$$I_{xy} = -M \int_{V} xy \, dV$$

... but are Constant in Body Space



$$\mathbf{I}(t) = \mathbf{R}(t)\mathbf{I}_{\text{body}}\mathbf{R}(t)^{T}$$

Approximating I_{body}: Bounding Boxes

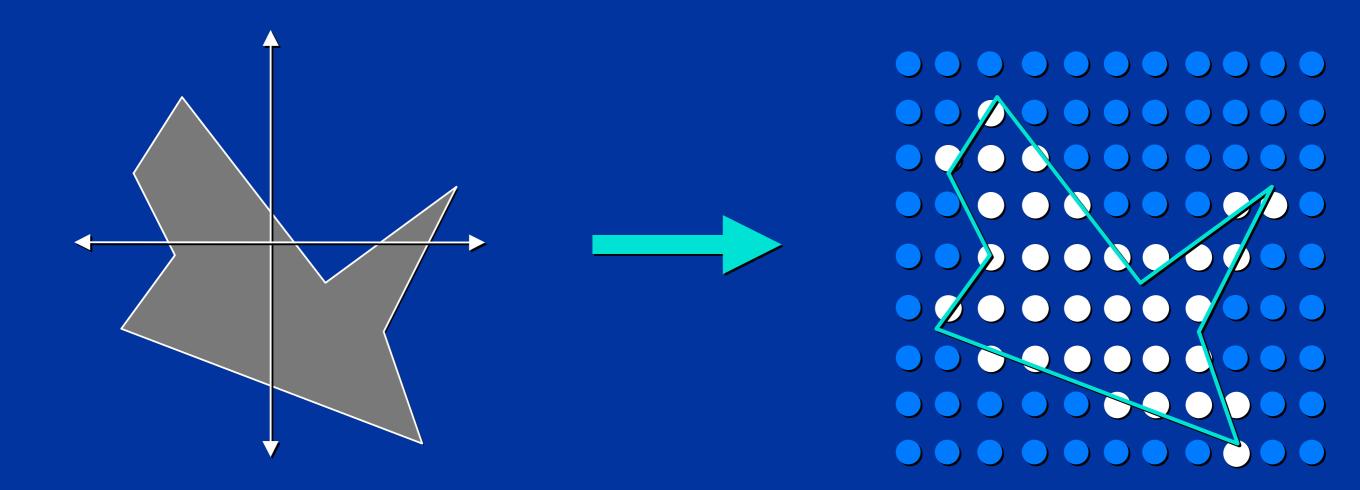


Pros: Simple.

Cons: Bounding box may not be a good fit.

Inaccurate.

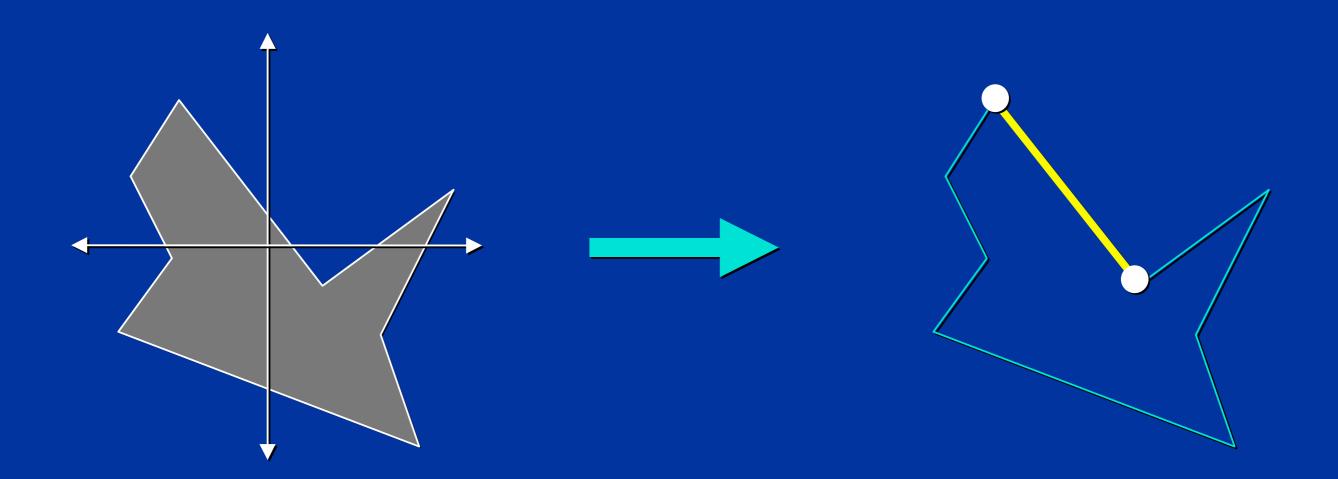
Approximating Ibody: Point Samping



Pros: Simple, fairly accurate, no B-rep needed.

Cons: Expensive, requires volume test.

Computing I_{body}: Green's Theorem (2x!)



Pros: Simple, exact, no volumes needed.

Cons: Requires boundary representation.

Code: http://www.acm.org/jgt/papers/Mirtich96

Summary

Rigid Body Equation of Motion

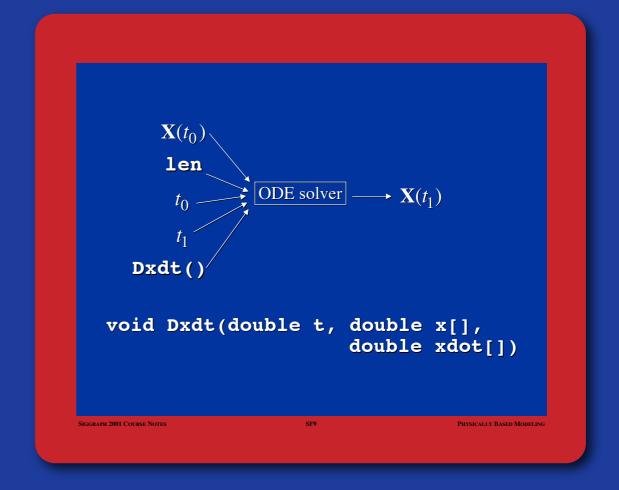
$$\frac{d}{dt}\mathbf{X}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ \mathbf{R}(t) \\ Mv(t) \\ \mathbf{I}(t)\boldsymbol{\omega}(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \boldsymbol{\omega}(t)^*\mathbf{R}(t) \\ F(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

P(t) – linear momentum

L(t) – angular momentum

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED MODELING



What's in the Course Notes

- 1. Implementation of **Dxdt()** for rigid bodies (bookkeeping, data structures, computations)
- 2. Quaternions—derivations and code
- 3. Miscellaneous formulas and examples
- 4. Derivations for force and torque equations, center of mass, inertia tensor, rotation equations, velocity/acceleration of points

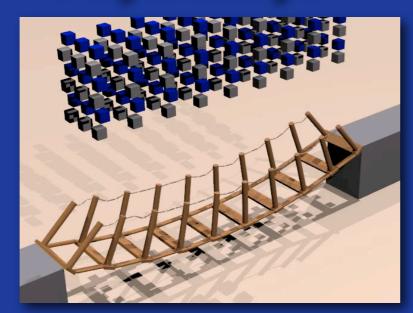
Example

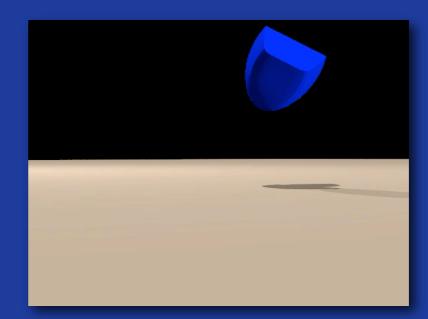
Example

These simulations could never have been created by hand.

Question

- What Kind of Collisions Are Possible?
 - Geometrically?
 - Physically?





- How can these be detected?
- What algorithm can handle them?