We are studying the very important case of a PDE that "pushes" (or "advepts") a density field \(\rho \) according to a velocity field \(\mathbf{u} \).

Case 1: \(\rho \) is a 1D function that moves to the right.

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho}{\partial x} = 0
\]

Case 2: We suppose that \(\rho \) is 2D and \(\mathbf{u} \) defines a rotational velocity field.

\[
\mathbf{u}(x,y) = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}
\]

The operator \(\mathbf{u} \cdot \nabla \) is called the advection operator.

Remark: Another way to look at it. Suppose we cover space with infinitely many particles with the following properties:

- At density \(\rho \), \(\frac{\partial \rho}{\partial t} = 0 \)
- At \(\rho \) position \(\frac{\partial \rho}{\partial t} + \frac{\partial \rho}{\partial x} = 0 \)
- At \(\rho \) velocity \(\frac{\partial \rho}{\partial t} = -\frac{\partial \rho}{\partial x} = -\mathbf{u} \cdot \nabla \rho \)

Does this look familiar?