The Animation of Natural Phenomena

Instructor: Adrien Treuille
E-mail: treuille@cs.cmu.edu
Questions

• What is your name?
 • Tell us about yourself.

• Experience...
 • OpenGL?
 • C++
 • Math?

• Why did you sign up for this class?
 • What do you hope to learn?
What is Physics-Based Animation?

Physics of our everyday lives...
What is Physics-Based Animation?
What is Physics-Based Animation?

[Baraf 1996]

Data Structures

Mathematical Techniques

Algorithms
Overview The Class

- Will explore various phenomena...
- Questions you should ask:
 - What should we simulate?
 - How do you simulate it?
 - Interactively?
 - How can we break it?
 - How can we control it?
 - How can we couple it with other objects?
 - How do we measure success?
Particles

Data Structures

DiffEQ

Constraints

Hair (1D)

Cloth (2D)

Crowds
Fluids

Particle Fluids

PDE Fluids

Free-surface Fluids
Rigid Bodies

Collisions and Stacking

[Guendelman 2003]
Deformable Objects

[Barbić and James 2008]

Deformable Object Collisions

Animatng Water Bottle Recycling Rates

Doug James
Cornell University
Humans

Performance Capture

Data-Driven Motion

Physical Simulation

[Vlasic et al 2003]
[Treuille et al 2007]
[Lui and Popović et al 2002]
Advanced Optimization

[Fattal and Lischinski et al 2003]

Control

[Twig and James 2007]

Model Reduction

[Treuille et al 2006]
Objectives

Goals
- Learn Techniques
- Fun Coding
- Quick Problem Solving
- Presentation Skills

Methods
- Weekly Lectures
- Paper Presentations
- Projects
- Questions
Logistics

Class n
- Paper Presentation
- Lecture
- Question

Class n+1
- Paper Presentation
- Lecture
- Question

Class n+2
- Paper Presentation
- Lecture
- Question

http://www.cs.cmu.edu/~15869-f10/
Syllabus

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Section</th>
<th>Topic</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/9</td>
<td>R</td>
<td>Background</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>9/14</td>
<td>T</td>
<td>Background</td>
<td>Differential Equations</td>
<td></td>
</tr>
<tr>
<td>9/16</td>
<td>R</td>
<td>Background</td>
<td>Particles, Implicit, and Symplectic Integration</td>
<td></td>
</tr>
<tr>
<td>9/21</td>
<td>T</td>
<td>Background</td>
<td>Large Linear Systems</td>
<td></td>
</tr>
<tr>
<td>9/23</td>
<td>R</td>
<td>Background</td>
<td>Constraints</td>
<td></td>
</tr>
<tr>
<td>9/28</td>
<td>T</td>
<td>Particles</td>
<td>Hair</td>
<td>Project 1: Assigned (Particles)</td>
</tr>
<tr>
<td>9/30</td>
<td>R</td>
<td>Particles</td>
<td>Cloth + Collisions</td>
<td></td>
</tr>
<tr>
<td>10/5</td>
<td>T</td>
<td>Particles</td>
<td>Crowds + Flocks</td>
<td></td>
</tr>
<tr>
<td>10/7</td>
<td>R</td>
<td></td>
<td>Adrien Gone: NSF Panel</td>
<td></td>
</tr>
<tr>
<td>10/12</td>
<td>T</td>
<td>Fluids</td>
<td>Particle-Based Fluids</td>
<td>Project 1: Due</td>
</tr>
<tr>
<td>10/14</td>
<td>R</td>
<td>Fluids</td>
<td>Adrien Gone: Okawa Foundation</td>
<td></td>
</tr>
<tr>
<td>10/19</td>
<td>T</td>
<td>Fluids</td>
<td>Partial Differential Equation Basics</td>
<td></td>
</tr>
<tr>
<td>10/21</td>
<td>R</td>
<td>Fluids</td>
<td>Stable Fluids</td>
<td>Project 2: Assigned (Fluids)</td>
</tr>
<tr>
<td>10/26</td>
<td>T</td>
<td>Fluids</td>
<td>Boundaries and Free Surface Fluids</td>
<td></td>
</tr>
<tr>
<td>10/28</td>
<td>R</td>
<td>Rigid Bodies</td>
<td>Rigid Bodies</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>T</td>
<td>Rigid Bodies</td>
<td>Rigid Body Collisions</td>
<td></td>
</tr>
<tr>
<td>11/4</td>
<td>R</td>
<td>Deformation</td>
<td>Deformable Objects</td>
<td>Project 2: Due</td>
</tr>
<tr>
<td>11/9</td>
<td>T</td>
<td>Deformation</td>
<td>Deformable Volumes</td>
<td>Project 3: Proposals Due</td>
</tr>
<tr>
<td>11/11</td>
<td>R</td>
<td>Deformation</td>
<td>Deformable Collisions</td>
<td></td>
</tr>
<tr>
<td>11/16</td>
<td>T</td>
<td>Humans</td>
<td>Human Performance Capture + Data-Driven Animation</td>
<td>Project 3: Mid-project Check</td>
</tr>
<tr>
<td>11/18</td>
<td>R</td>
<td>Humans</td>
<td>Physics-Based Human Animation</td>
<td></td>
</tr>
<tr>
<td>11/23</td>
<td>T</td>
<td>Advanced</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>11/25</td>
<td>R</td>
<td></td>
<td>Thanksgiving Holiday</td>
<td></td>
</tr>
<tr>
<td>11/30</td>
<td>T</td>
<td>Advanced</td>
<td>Model Reduction</td>
<td></td>
</tr>
<tr>
<td>12/2</td>
<td>R</td>
<td>Advanced</td>
<td>Final Project Presentations</td>
<td>Project 3: Due</td>
</tr>
</tbody>
</table>
Grading

- 24% Project 1: Particles (due 10/12)
- 24% Project 2: Fluids (due 11/04)
- 36% Final Project
 - 5% Mid-point Check (due 11/18)
 - 31% Final Project (due 12/2)
- 16% Class Presentation / Participation
Logistics

Anonymous Feedback:
http://www.cmu.edu/blackboard/

Lab:
WeH 5336
/afs/cs.cmu.edu/project/weh5336/SetupAndrewAccount
Use Caps: hbovik@ANDREW.CMU.EDU

Disk Space:
/afs/cs.cmu.edu/academic/class/15869-f08-users
10GB per user
Name: Jeehyung (Jee) Lee
Office Hours: Monday 3-4pm
NSH 4228
Math Preliminaries

\[E = \frac{1}{c^2} \frac{\partial \phi}{\partial t} \]

\[\nabla \times E = -\frac{\partial B}{\partial t} \]

\[\nabla \cdot B = 0 \]

\[\nabla \times B = \mu_0 J + \frac{\epsilon_0 \mu_0}{c^2} \frac{\partial \phi}{\partial t} \]
Questions

• What everyday things are we missing here?
 • These could be final projects!

• How can we measure success?
 • How do we measure “success” for chaotic systems can cannot be recreated?

• Can we come up with an objective notion of “visual correctness?”
Class-Generated Ideas

- Melting
- Freezing
- State Changes
- Residues
- Shattering Glass
- Mixing of Fluids
- Paintbrush on Paper
- “Turing test” for physic-based animation
- Interactive “turing test”
- Organic Decay
- Galaxies / Black Holes
- Use statistical tests to see if the output matches the distribution of the observed output
- Flags Fluttering
- Explosions /
- Flow in a flexible pipe
- Repeatability Tests - would it converge to a set of possibilities
Homework 1

Read:

Differential Equation Basics

Andrew Witkin and David Baraff
(on the website)