Lecture 33. The Arnoldi Iteration

Despite the many names and acronyms that have proliferated in the field of
Krylov subspace matrix iterations, these algorithms are built upon a common
foundation of a few fundamental ideas. One can take various approaches to
describing this foundation. Ours will be to consider the Arnoldi process, a
Gram-Schmidt-style iteration for transforming a matrix to Hessenberg form.

The Arnoldi/Gram—Schmidt Analogy

Suppose, to pass the time while marooned on a desert island, you challenged
yourself to devise an algorithm to reduce a nonhermitian matrix to Hessenberg
form by orthogonal similarity transformations, proceeding column by column
from a prescribed first column g,. To your surprise, you would probably
find you could solve this problem in an hour and still have time to gather
coconuts for dinner. The method you would come up with goes by the name
of the Arnoldi iteration. If A is hermitian, the Hessenberg matrix becomes
tridiagonal, an n-term recurrence relation becomes a three-term recurrence
relation, and the name changes to the Lanczos iteration, to be discussed in
Lecture 36.

Here is an analogy. For computing the QR factorization A = QR of a
matrix A, we have discussed two methods in this book: Householder reflec-
tions, which triangularize A by a succession of orthogonal operations, and
Gram—Schmidt orthogonalization, which orthogonalizes A by a succession of
triangular operations. Though Householder reflections lead to a more nearly
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orthogonal matrix @ in the presence of rounding errors, the Gram-Schmidt
process has the advantage that it can be stopped part-way, leaving one with
a reduced QR factorization of the first 7 columns of A The problem of com-
puting a Hessenberg reduction A4 = QHQ" of a matrix A is exactly analogous.
There are two standard methods: Householder reflections (applied now on two
sides of A rather than one) and the Arnoldi iteration. Thus Arnoldi is the
analogue of Gram-Schmidt for similarity transformations to Hessenberg form
rather than QR factorization. Like Gram-Schmidt, it has the advantage that
it can be stopped part-way, leaving one with a partial reduction to Hessen-
berg form that is exploited in various manners to form iterative algorithms
for eigenvalues or systems of equations.

Thus, this lecture is to Lecture 26 as Lecture 8 is to Lecture 10.

We can summarize the four algorithms just mentioned in a table:

A=QR  A=QHQ"

orthogonal structuring | Householder Householder

structured orthogonalization | Gram-Schmidt Arnoldi

For the remainder of this book, m and n < m are positive integers, A is
a real or complex m x m matrix, and || - | = |l |l In addition, one further
character will now appear in the drama, an m-vector that we shall denote by b.
The Arnoldi process needs this vector in order to get started. For applications
to eigenvalue problems, we typically assume that bis random. For applications
to systems of equations, as considered in later lectures, it will be the right-hand
side, or more generally, the initial residual (see Exercise 35.5).

Mechanics of the Arnoldi Iteration

A complete reduction of A to Hessenberg form by an orthogonal similarity
transformation might be written 4 = QHQ*, or AQ = QH. However, in
dealing with iterative methods we take the view that m is huge or infinite, so
that computing the full reduction is out of the question. Instead we consider
the first 7 columns of AQ = QH. Let Q, be the m x n matrix whose columns
are the first n columns of Q:

Q.= |g G- 1q,]- (33.1)
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Here and in the lectures ahead, it would be consistent with our usage else-
where in the book to put hats on the symbols @, since these matrices are
rectangular, but to keep the formulas uncluttered we do not do this.

Let H, be the (n+1)xn upper-left section of H, which is also a Hessenberg
matrix:

[ h11 R hln {
hay  hoy .
H, = L. B (33.2)
h’n‘n—l h’nrl
L hn-i—l,n ]
Then we have _
AQ, = Q.1 H,, (33.3)
that is,
hu : hln
hoy
A G| | = || | st
h’n+l,n

The nth column of this equation can be written as follows:
AQn = h’an] S h’ann * hn+l,n‘?ﬂ+1‘ : (334)

In'words, gn41 Satisfies an (n+ 1)-term recurrence relation involving itself and
the previous Krylov vectors.
The Arnoldi iteration is simply the modified Gram-Schmidt iteration that

implements (33.4). The following algorithm should be compared with Algo-
rithm 8.1.

Algorithm 33.1. Arnoldi Iteration

b = arbitrary, ¢, = b/||b||
for =128
v = Ag,
forj=1ton
hin = qjv
v=v=h.q;
hai1a = |0l [see Exercise 33.2 concerning h,,,, , = 0]

Qni1 = U/hn-i-l,n
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The reader can see at a glance how simple the Arnoldi process is. In a
high-level language such as MATLAB, it can be implemented in less than a
dozen lines. The matrix A appears only in the product Ag,, which can be
computed by a black box procedure as described in the last lecture.

QR Factorization of a Krylov Matrix

The power of the Arnoldi process lies in the various interpretations that can
be made of it, and in the algorithms these suggest. For a first interpretation,
consider the recurrence (33.4). It is evident from this formula that the vectors
{q;} form bases of the successive Krylov subspaces generated by A and b,
defined as follows:

Ko = (b,Ab,..., A" 'b) = (q1,92,---,¢.) C C™. (33.5)

Moreover, since the vectors g, are orthonormal, these are orthonormal bases.
Thus the Arnoldi process can be described as the systematic construction of
orthonormal bases for successive Krylov subspaces.

To express this observation in matrix form, let us define K, to be the m xn
Krylov matriz

K,=|b|Ab|---| A" ]|, (33.6)

Then K, must have a reduced QR factorization
K, = Q.R,, (33.7)

where (), is the same matrix as above. In the Arnoldi process, neither K,
nor R, is formed explicitly. Doing so would make for an unstable algorithm,
since these are exceedingly ill-conditioned matrices in general, as the columns
of K, all tend to approximate the same dominant eigenvector of A. However,
(33.6) and (33.7) give an intuitive explanation of why the Arnoldi process
leads to effective methods for determining certain eigenvalues. Clearly K,
might be expected to contain good information about the eigenvalues of A
with largest modulus, and the QR factorization might be expected to reveal
this information by peeling off one approximate eigenvector after another,
starting with the dominant one.

The explanation just given may remind the reader of a similar discussion
that appeared earlier in this book. The relationship between (33.6)-(33.7)
and the Arnoldi algorithm is analogous to that between simultaneous iteration
and the QR algorithm for computing eigenvalues of matrices. One is easy to
understand but unstable, the other is subtler but stabler. The difference is



=T

254 ParT VI. ITERATIVE METHODS

that, whereas the Arnoldi iteration is based upon the QR factorization (33.7)
of the matrix whose columns are b, Ab, ..., A*~'b, simultaneous iteration and
the QR algorithm are based upon the QR factorization (28.16) of the matrix
whose columns are Ay, ..., A"e,,. We can summarize this parallel in another
table:

quasi-direct iterative

straightforward but unstable (Simultaneous iteration | (33.6)—(33.7)
subtle but stable I

QR algorithm Arnoldi

Projection onto Krylov Subspaces

Another way to view the Arnoldi process is as a computation of projections
onto successive Krylov subspaces. To see this, note that the product QnQ, 11
is the n x (n + 1) identity, i.e., the n x (n + 1) matrix with 1 on the main
diagonal and 0 elsewhere. Therefore Q;QHHI-},‘ is the n x n Hessenberg matrix
obtained by removing the last row of i, :

h‘ll e hln

H, = _ _ : 1. (33.8)

From (33.3) we accordingly have

H,=Q,AQ, (33.9)

This matrix can be interpreted as the representation in the basis {q1,--,qa}
of the orthogonal projection of A onto K. Is it clear what this interpretation
means? Here is a precise statement. Consider the linear operator K, — K.
defined as follows: given v € K, apply A to it, then orthogonally project
Av back into the space K. Since the orthogonal projector of C™ onto K,
is @,Q%, this operator can be written @, Q%A with respect to the standard
basis of C™. With respect to the basis of columns of Q,,, it can therefore be
written @, AQ,.

The kind of projection just described comes up throughout applied and
numerical mathematics. In another context it is known as the Rayleigh-Ritz
procedure; not coincidentally, in the diagonal elements of H, one recognizes
the Rayleigh quotients of A with respect to the vectors g;. This projection
process is also one of the ideas underlying finite element methods for solution
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of partial differential equations, as well as their younger relatives known as
spectral methods.

Since H, is a projection of A, one might imagine that its eigenvalues would
be related to those of A in a useful fashion. These n numbers,

{0;} = {eigenvalues of H,}, (33.10)

are called the Arnoldi eigenvalue estimates (at step n) or Ritz values (with
respect to K, ) of A. In the next lecture we shall see that some of these numbers
may be extraordinarily accurate approximations to some of the eigenvalues of
A, even for n < m.

We summarize the developments of this lecture in a theorem, to be com-
pared with Theorem 28.3.

Theorem 33.1. The matrices Q, generated by the Arnoldi iteration are re-
duced QR factors of the Krylov matriz (33.6):

K,=0Q.R,. (33:11)
The Hessenberg matrices H, are the corresponding projections
H. =0 AQ.,, (33.12)
and the successive iterates are related by the formula

AQn = Qn-{-]gﬂ_- (33]3)

Exercises

33.1. Let A € C™"™ and b € C™ be arbitrary. Show that any z € K, is
equal to p(A)b for some polynomial p of degree < n — 1.

33.2. Suppose Algorithm 33.1 is executed for a particular 4 and b until at
some step n, an entry h, ., . = 0 is encountered.

(a) Show how (33.13) can be simplified in this case. What does this imply
about the structure of a full m x m Hessenberg reduction 4 = QHQ" of A?
(b) Show that K, is an invariant subspace of A, i.e., AK, C K.

(c) Show that if the Krylov subspaces of A4 generated by b are defined by
Ky = (b, Ab,..., A* 'b) as in (33.5), then K, = K, ,, =K, ,, =

(d) Show that each eigenvalue of H,, is an eigenvalue of A.

(e) Show that if A is nonsingular, then the solution z to the system of equa-
tions Az = b lies in K.
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The appearance of an entry Bpi1n = 0is called a breakdown of the Arnoldi
iteration, but it is a breakdown of a benign sort. For applications in computing
eigenvalues (Lecture 34) or solving systems of equations (Lecture 35), because
of (d) and (e), a breakdown usually means that convergence has occurred and
the iteration can be terminated. Alternatively, a new orthonormal vector Gni1
could be selected at random and the iteration then continued.

33.3. (a) Suppose Algorithm 33.1 is executed for a particular A and b and
runs to completion (n = m), with no breakdown of the kind described in the
last exercise. Show that this implies that the minimal polynomial of A is of
degree m.

(b) Conversely, suppose that the minimal polynomial of A is of degree m.
Show that this does not imply that for a particular choice of b, Algorithm 33.1
will necessarily run to completion.

(c) Explain why the result of (a) does not contradict Exercise 25.1(b).



