- 1. Normal Symmetry. Consider a random vector $R = \frac{1}{\sqrt{D}}(r_1, r_2, \dots, r_D)$, where each entry $r_i \sim N(0, 1)$ independently. Show the following facts about R:
 - (a) Show that R is "spherically symmetric", i.e., given any two vectors \mathbf{x}, \mathbf{y} with $\|\mathbf{x}\| = \|\mathbf{y}\|$, the probability density function of R at \mathbf{x} is equal to that at \mathbf{y} . Hence, infer that $R/\|R\|$ is a uniformly random point on the surface of a unit D-dimensional sphere.
 - (b) Prove that if $Y_1 \sim N(\mu_1, \sigma_1^2)$ and $Y_1 \sim N(\mu_1, \sigma_1^2)$ are independent, then

$$Y_1 + Y_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

- (c) Show that $||R|| \notin (1 \pm \varepsilon)$ with probability $\exp(-O(\varepsilon^2 D))$.
- 2. (k-Universal.) Recall the definition of k-wise-independent (also known as k-universal) from Lecture #13.
 - (a) For a given matrix $A \in \{0,1\}^{m \times u}$, define $h_A : \{0,1\}^u \to \{0,1\}^m$ by $h_A(x) = Ax$; all calculations are done modulo 2. Consider the hash family $H = \{h_A \mid A \in \{0,1\}^{m \times u}\}$ be the set of all 2^{mu} functions obtained this way. Show that this hash family is not 2-universal.
 - (b) For a given matrix $A \in \{0,1\}^{m \times u}$ and $b \in \{0,1\}^m$, define $h_{A,b} : \{0,1\}^u \to \{0,1\}^m$ by $h_A(x) = Ax + b$; all calculations are done modulo 2. Consider the hash family $H = \{h_{A,b} \mid A \in \{0,1\}^{m \times u}, b \in \{0,1\}^m\}$ be the set of all $2^{m(u+1)}$ functions obtained this way. Show that this hash family is 2-universal.
 - (c) Construct matrix $A \in \{0, 1\}^{m \times u}$ as follows. Fill the first row $A_{1,\star}$ and the first column $A_{\star,1}$ with independently random bits. For any other entry i, j for i > 1 and j > 1, define $A_{i,j} = A_{i-1,j-1}$. So all entries in each "northwest-southeast" diagonal in A are the same. Also pick a random *m*-bit vector $b \in \{0, 1\}^m$. For $x \in U = \{0, 1\}^u$, define $h_{A,b}(x) := Ax + b$ modulo 2 as usual. Show this hash family H with $2^{(u+m-1)+m}$ hash functions is 2-universal.
 - (d) Given elements $\alpha_0, \alpha_1, \ldots, \alpha_{k-1} \in \mathbb{F}$, define $f(x) = \sum_{i=0}^{k-1} \alpha_i x^i$, where the calculations are done in the field \mathbb{F} . Show that if $k \leq p$, the hash family H of all such functions from $\mathbb{F} \to \mathbb{F}$ is k-universal.
- 3. (Graph Domination.) Given a graph G = (V, E), a set $D \subseteq V$ is dominating if for every vertex v, either $v \in D$ or some neighbor of v is in D. Suppose the minimum degree of any vertex in G is δ .
 - (a) Pick a random set D, where each vertex v is added to D independently with probability $\min\{1, \frac{c \log n}{1+\delta}\}$. Show that D is a dominating set with probability at least $1 1/n^{c-1}$.
 - (b) Can you find a dominating set of expected size $\frac{n(1+\ln(1+\delta))}{1+\delta}$. (Hint: pick a smaller random set of vertices, and then add some more vertices as needed.)
- 4. **Hoeffding vs. Bernstein.** There are many different "Chernoff-style" concentration inequalities that are useful in different situations. E.g., consider the following Hoeffding's and Bernstein's inequalities.

- **Hoeffding** Let X_1, \ldots, X_n be independent r.v.s supported on $[a_i, b_i]$ and let $S := \sum_{i=1}^n X_i$. Then $\mathbf{Pr}[|S - \mathbf{E}[S]| \ge \lambda] \le 2 \exp\left(\frac{-2\lambda^2}{\sum_i (b_i - a_i)^2}\right)$.
- **Bernstein** Let X_1, \ldots, X_n be independent r.v.s supported on $[a_i, b_i]$ where $b_i a_i \leq M$ and let $S := \sum_{i=1}^n X_i$. Then $\mathbf{Pr}[|S \mathbf{E}[S]| \geq \lambda] \leq 2 \exp\left(\frac{-\lambda^2/2}{\mathbf{Var}[S] + \frac{1}{3}M\lambda}\right)$.
- (a) Find a setting with independent random variables supported on [0, 1] where Hoeffding's inequality gives an asymptotically tighter bound than Bernstein's inequality. (Hint: Bernstein's inequality has unavoidable subexponential behavior for large λ .)
- (b) Find a similar setting where Bernstein's inequality gives asymptotically better bound than Hoeffding's inequality. (Hint: consider the case when λ is small.)