1. Normal Symmetry. Consider a random vector $R=\frac{1}{\sqrt{D}}\left(r_{1}, r_{2}, \ldots, r_{D}\right)$, where each entry $r_{i} \sim N(0,1)$ independently. Show the following facts about R :
(a) Show that R is "spherically symmetric", i.e., given any two vectors \mathbf{x}, \mathbf{y} with $\|\mathbf{x}\|=\|\mathbf{y}\|$, the probability density function of R at \mathbf{x} is equal to that at \mathbf{y}. Hence, infer that $R /\|R\|$ is a uniformly random point on the surface of a unit D-dimensional sphere.
(b) Prove that if $Y_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ are independent, then

$$
Y_{1}+Y_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

(c) Show that $\|R\| \notin(1 \pm \varepsilon)$ with probability $\exp \left(-O\left(\varepsilon^{2} D\right)\right)$.
2. (k-Universal.) Recall the definition of k-wise-independent (also known as k-universal) from Lecture \#13.
(a) For a given matrix $A \in\{0,1\}^{m \times u}$, define $h_{A}:\{0,1\}^{u} \rightarrow\{0,1\}^{m}$ by $h_{A}(x)=A x$; all calculations are done modulo 2. Consider the hash family $H=\left\{h_{A} \mid A \in\{0,1\}^{m \times u}\right\}$ be the set of all $2^{m u}$ functions obtained this way. Show that this hash family is not 2-universal.
(b) For a given matrix $A \in\{0,1\}^{m \times u}$ and $b \in\{0,1\}^{m}$, define $h_{A, b}:\{0,1\}^{u} \rightarrow\{0,1\}^{m}$ by $h_{A}(x)=A x+b$; all calculations are done modulo 2 . Consider the hash family $H=\left\{h_{A, b} \mid A \in\{0,1\}^{m \times u}, b \in\{0,1\}^{m}\right\}$ be the set of all $2^{m(u+1)}$ functions obtained this way. Show that this hash family is 2 -universal.
(c) Construct matrix $A \in\{0,1\}^{m \times u}$ as follows. Fill the first row $A_{1, \star}$ and the first column $A_{\star, 1}$ with independently random bits. For any other entry i, j for $i>1$ and $j>1$, define $A_{i, j}=A_{i-1, j-1}$. So all entries in each "northwest-southeast" diagonal in A are the same. Also pick a random m-bit vector $b \in\{0,1\}^{m}$. For $x \in U=\{0,1\}^{u}$, define $h_{A, b}(x):=A x+b$ modulo 2 as usual. Show this hash family H with $2^{(u+m-1)+m}$ hash functions is 2 -universal.
(d) Given elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k-1} \in \mathbb{F}$, define $f(x)=\sum_{i=0}^{k-1} \alpha_{i} x^{i}$, where the calculations are done in the field \mathbb{F}. Show that if $k \leq p$, the hash family H of all such functions from $\mathbb{F} \rightarrow \mathbb{F}$ is k-universal.
3. (Graph Domination.) Given a graph $G=(V, E)$, a set $D \subseteq V$ is dominating if for every vertex v, either $v \in D$ or some neighbor of v is in D. Suppose the minimum degree of any vertex in G is δ.
(a) Pick a random set D, where each vertex v is added to D independently with probability $\min \left\{1, \frac{c \log n}{1+\delta}\right\}$. Show that D is a dominating set with probability at least $1-1 / n^{c-1}$.
(b) Can you find a dominating set of expected size $\frac{n(1+\ln (1+\delta))}{1+\delta}$. (Hint: pick a smaller random set of vertices, and then add some more vertices as needed.)
4. Hoeffding vs. Bernstein. There are many different "Chernoff-style" concentration inequalities that are useful in different situations. E.g., consider the following Hoeffding's and Bernstein's inequalities.

Hoeffding Let X_{1}, \ldots, X_{n} be independent r.v.s supported on $\left[a_{i}, b_{i}\right]$ and let $S:=\sum_{i=1}^{n} X_{i}$. Then $\operatorname{Pr}[|S-\mathbf{E}[S]| \geq \lambda] \leq 2 \exp \left(\frac{-2 \lambda^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}\right)$.
Bernstein Let X_{1}, \ldots, X_{n} be independent r.v.s supported on $\left[a_{i}, b_{i}\right]$ where $b_{i}-a_{i} \leq M$ and let $S:=\sum_{i=1}^{n} X_{i}$. Then $\operatorname{Pr}[|S-\mathbf{E}[S]| \geq \lambda] \leq 2 \exp \left(\frac{-\lambda^{2} / 2}{\operatorname{Var}[S]+\frac{1}{3} M \lambda}\right)$.
(a) Find a setting with independent random variables supported on $[0,1]$ where Hoeffding's inequality gives an asymptotically tighter bound than Bernstein's inequality. (Hint: Bernstein's inequality has unavoidable subexponential behavior for large λ.)
(b) Find a similar setting where Bernstein's inequality gives asymptotically better bound than Hoeffding's inequality. (Hint: consider the case when λ is small.)

