
15-850: Advanced Algorithms CMU, Spring 2024
Exercises with Homework #2

Exercises are for fun and edification, please do not submit. (You may discuss these exercises with
others.) The ones below are grouped by topic and their subparts do not necessarily build on one
another (for example, you do not need to do (a) to do (b)).

1. Matrix Multiplication is Useful. Given an undirected simple graph G = (V,E), a triangle
is just a clique of size 3; i.e., 3 vertices such that all 3 edges are present. Give algorithms for
the following problems:

• Find a triangle in G in time nω.

• Find a 3k-clique in a graph in time nkω.

• Find a triangle in G in time m1.5. (This one is slightly harder—not an exercise—and
does not use matrix multiplication.)

2. Low-Diameter Decompositions for Simple Graphs. Recall a β-low-diameter decom-
position, given graph G and distance D, randomly breaks it into pieces of max-distance D,
such that each pair x, y is separated with probability at most dG(x,y)

D · β.

(a) Show that if each edge (x, y) ∈ E(G) is cut with probability dG(x,y)
D · β, then so is any

pair x, y ∈ V . Hence, if the graph only has unit-weight edges, each edge can be cut with
probability at most β/D.

(b) Show that (i) any path graph has an LDD with β = 1, (ii) any tree with β = 2, and (iii)
the standard k-dimensional (n1/k × n1/k × · · · × n1/k)-grid with β = k.

3. Approximation via Randomized Simplification. In Lecture #5 we saw low-stretch
trees, and used them to approximate APSP on general graphs. We explore this connection
further, via the k-median problem we saw in HW#0: Given a graph G and k, the k-median
problem asks you to find a set C ⊆ V with |C| = k to minimize ΦG(C) :=

∑
v∈V dG(v, C).

(a) Given an algorithm to solve k-median optimally on trees, show that the algorithm that
samples a tree T from (random) low-stretch tree distribution with stretch α, solves
k-median on T to get CT , and outputs this set CT , ensures that the expected cost
ET [ΦG(CT)] ≤ αOPT .

(b) Show that if you perform L := O(lognε) independent runs of the above algorithm to get
sets C1, C2, . . . CL, and return the set with the least ΦG(Ci) value from among these
(call it C∗), then Pr[ΦG(CT) > (1 + ε)αOPT] ≤ 1/poly(n).

(c) Show that the expected weight of a low-stretch tree is at most O(α) times the MST.

(d) What kinds of problems can you solve using the ideas in the above parts. E.g., does
it work for APSP? How about the K-center problem? Or the K-means problem which
wants to minimize Ψd(C) :=

∑
v∈X(d(v, C))2. Why or why not?

(e) (Slightly non-trivial) Extend your dynamic-programming algorithm from HW#0 to solve
k-median on an edge-weighted tree. Hint: first solve it on a binary tree. Then show how
to reduce the problem to binary trees.

4. Flows, Kings, and Halls. Recall that König’s theorem says for a bipartite graph G, the
size of the maximum matching in G is equal to the size of the minimum vertex cover.

1

https://en.wikipedia.org/wiki/Metric_k-center

(a) Use the max-flow/min-cut theorem to prove Kőnig’s theorem. (Recall that the max-
flow/min-cut theorem says that in any flow network, the maximum s-t flow equals the
minimum s-t cut. Moreover if the arc capacities are integers, then the max-flow is
guaranteed to be integral.)

(b) Use Kőnig’s theorem to prove Hall’s theorem:

In a bipartite graph G = (L,R,E), for any set S ⊆ L, let N(S) = {r ∈ R | ∃` ∈
S, (`, r) ∈ E} be the neighbors of S. Then G has a matching of size |L| if and
only if |N(S)| ≥ |S| for all S ⊆ L.

(c) Here is the perfect matching polytope on general graphs, given by the exponentially
many inequalities:

Kpm-nonbip := {x ∈ Rm |
∑
e∈∂v

xe = 1,
∑
e∈∂S

xe ≥ 1 for all odd sets S, x ≥ 0}.

As before ∂S is the set of edges with one end the set S and the other end outside. Show
that the “odd set inequalities”

∑
e∈∂S xe ≥ 1 for odd cardinality sets S can be replaced

by
∑

e∈ES
xe ≤ b|S|/2c, where ES is the set of edges both of whose endpoints lie in S.

5. Matching Reductions.

(a) Suppose you have an algorithm that solves max-weight perfect matchings (MaxWPM)
for all non-negative weight functions. Give reductions that allow you to solve (a) min-
weight perfect matchings (MinWPM) and (b) min-weight max-cardinality matchings
(MinWMaxM)—i.e., among all matchings of size equal to MM(G) find the one with
least weight. Your reduction should only make a single call to the max-weight perfect
matching oracle.

If the MinWPM and MinWMaxM instances are bipartite, ensure that the reductions
give you MaxWPM instances that are bipartite too.

(b) Now suppose you are allowed to make multiple calls. Show how to devise an algorithm
that tells you the maximum cardinality of a matching in a graph using an algorithm that
tells you whether a graph has a perfect matching or not. You should use only O(log n)
calls to the PM algorithm.

6. Self-Reduction. Suppose you have an algorithm A that takes a graph G and a number K,
and outputs yes if the graph has a vertex cover of size at most K, and no otherwise. Give
an algorithm for the search problem, i.e., one that takes G,K and outputs a vertex cover of
size at most K (if one exists), using at most n calls to A.

7. Practice taking Duals of Large LPs. Recall that a (primal) linear program in standard
form can be represented by

minimize cTx

subject to Ax ≥ b

x ≥ 0.

Here, c and x are vectors in Rn where n is the number of variables, and b is a vector in Rm

whre m is the number of constraints. The matrix A ∈ Rm×n has m rows and n columns. The

2

dual linear program is defined by

maximize bTy

subject to ATy ≤ c

y ≥ 0.

When the primal linear program is not represented in standard form, it is easiest to first
transform it to standard form (which may involve adding new variables or constraints) and
then take the dual.

(a) Recall the maximum weight perfect matching LP for bipartite graphs with vertices (buy-
ers) b on the left and vertices (items) i on the right:

maximize
∑
bi

vbixbi

subject to
∑
b

xbi = 1 ∀i∑
i

xbi = 1 ∀b

xbi ≥ 0 ∀bi

Show that the dual is

minimize
∑
i

pi +
∑
b

ub

subject to pi + ub ≥ vbi ∀bi
ybi unconstrained ∀bi

In case you are stuck, I have written a sample solution for this problem at the
end of this document.

(b) Recall the minimum cost r-arborescence LP for a directed graph G = (V,A):

minimize
∑
a∈A

waxa

subject to
∑

a∈∂+S

xa ≥ 1 ∀S ⊆ V − {r}, |S| > 1

∑
a∈∂+v

xa = 1 ∀v 6= r

xa ≥ 0 ∀a ∈ A

Show that the dual is

maximize
∑

S⊆V−{r}

yS

subject to
∑

S:a∈∂+S

yS ≤ wa ∀a ∈ A

yS ≥ 0 ∀S ⊆ V − {r}, |S| > 1

y{v} unconstrained ∀v 6= r

3

(c) Consider the following (exponential-sized) LP for maximum s-t flow with edge capacities
ce: let P be the (exponentially large) set of (non-self-intersecting) paths from s to t. For
each path P ∈ P, declare a variable fP ≥ 0 which denotes the amount of flow sent along
path P . We can write the maximum s-t flow LP as

maximize
∑
P∈P

fP

subject to
∑

P∈P:e∈P
fP ≤ ce ∀e ∈ E

fP ≥ 0 ∀P ∈ P.

Note that there is a smaller, polynomial-sized max-s-t-flow LP that simply enforces flow
conservation at each vertex outside s and t. However, the exponential-sized LP has
many conceptual advantages, as we will see below.

i. Show that the dual is

minimize
∑
e∈E

ce`e

subject to
∑
e∈P

`e ≤ 1 ∀P ∈ P

`e ≥ 0 ∀e ∈ E

Hint: in this case, the original s-t-flow LP already fits the dual LP very well. So it
may be easier to encode it as the dual, and the new LP above as the primal. This
works because taking the dual of the dual LP gives back the primal LP.

ii. How can we interpret the dual LP above? In particular, what does the constraint∑
e∈P `e ≤ 1 for all P ∈ P mean conceptually? (Hint: think about the variables `e

as edge lengths.)

iii. Now consider the LP for maximum budget-constrained s-t flow within a given budget
B ≥ 0. There is a cost/weight we on each edge e ∈ E (unrelated to its capacity ce),
and for each path P ∈ P, let wP =

∑
e∈P we be the total cost of edges in P . We

require the total cost of the s-t flow to be at most B:

maximize
∑
P∈P

fP

subject to
∑

P∈P:e∈P
fP ≤ ce ∀e ∈ E∑

P∈P
wP fP ≤ B

fP ≥ 0 ∀P ∈ P.

Compute the dual and interpret it in a similar way. (Hint: imagine
increasing/decreasing the length of each edge by the same amount.)

Solution to (a): Write constraint
∑

b xbi = 1 as
∑

b xbi ≤ 1 and
∑

b xbi ≥ 1. Multiply the

4

latter inequality by −1 to get
∑

b−xbi ≤ −1. We can rewrite the LP as

maximize
∑
bi

vbixbi

subject to
∑
b

xbi ≤ +1 ∀i∑
b

−xbi ≤ −1 ∀i∑
i

xbi ≤ +1 ∀b∑
i

−xbi ≤ −1 ∀b

xbi ≥ 0 ∀bi

The solution vector x has an entry xbi for each edge bi. The objective vector c has coordinate
vbi for each edge bi. The constraint matrix A has:

(a) for each item i, a row named i+ with +1 on entry bi for all b and other entries 0,

(b) for each item i, a row named i− with −1 on entry bi for all b and other entries 0,

(c) for each buyer b, a row named b+ with +1 on entry bi for all i and other entries 0,

(d) for each buyer b, a row named b− with −1 on entry bi for all i and other entries 0.

The constraint vector b has value +1 on each coordinate i+ and b+, and value −1 on each
coordinate i− and b−.

This LP is already in standard dual form, so its dual is the primal LP, where I use y instead
of x since x is already taken:

minimize bTy

subject to ATy ≥ c

y ≥ 0.

The vector y has the same dimension as b, so it has coordinates i+, i− for each i and coor-
dinates b+, bi for each b. The objective function bTy can be written as

bTy =
∑
i

bi+yi+ +
∑
i

bi−yi− +
∑
b

bb+yb+ +
∑
b

bb−yb−

=
∑
i

(+1)yi+ +
∑
i

(−1)yi− +
∑
b

(+1)yb+ +
∑
b

(−1)yb−

=
∑
i

(yi+ − yi−) +
∑
b

(yb+ − yb−).

Next, we focus on the constraint ATy ≥ c. Recall that matrix A a column for each edge bi
and a column for each i+, i−, b+, b−. So AT has a row for each edge bi and a column for each
i+, i−, b+, b−. Each row bi of the constraint ATy ≥ c can be written as∑

i

yi+︸ ︷︷ ︸
columns i+

+
∑
i

−yi−︸ ︷︷ ︸
columns i−

+
∑
b

yb+︸ ︷︷ ︸
columns b+

+
∑
b

−yb−︸ ︷︷ ︸
columns b−

≥ vbi.

5

So far, everything was mechanical: tedious but not insightful. Here comes the main insight:
define a new variable pi to represent yi+ − yi− and a new variable ub to represent yb+ −
yb−. The variables pi are unconstrained since pi = yi+ − yi− where yi+ , yi− ≥ 0, and the
variables ub are unconstrained too. With this transformation, the objective function becomes∑

i pi +
∑

b ub and the constraints become
∑

i pi +
∑

b ub ≥ vbi, exactly as desired. Note that
this transformation is equivalent: from any solution with variables yi+ , yi− , yb+ , yb− we can
transform it to a solution with pi, ub (by the way we defined pi, ub), and from any solution
with pi, ub we can transform it to a solution with yi+ , yi− , yb+ , yb− (since we can always find
yi+ , yi− ≥ 0 whose difference is pi, and same for ub).

6

