Lecture 7: Matchings & Linear Programs

- weighted matching algorithms
 - via LPs
 - LP refresher
 - Perfect Matching Polytope
 - bipartite
 - non-bipartite

\[
\begin{align*}
\text{min-weight perfect matchings} \\
\text{max-wt match}\uparrow
\end{align*}
\]

\[\text{We} \quad G = (U, E) \quad \text{and} \quad G = (L, R, E)\]

Max Cardinality
\[
\begin{cases}
\text{Berge's Thm} & O(mn) \\
\text{König's Thm} & O(mn) \\
\text{Blossom Alg} & O(mn^2)
\end{cases}
\]
LPs \(\mathbb{R}^d \)

- \(\mathbb{R}^d \): \(\{ x : a \cdot x \geq b \} \) halfspace
- polyhedron: intersection of finitely many halfspaces

K: polytope - bounded polyhedron

K convex: \(\forall x, y \in K, \forall \lambda \in [0, 1] \) \(\lambda x + (1-\lambda)y \in K \)

Linear Program: \(\min \; \xi \cdot x \mid x \in K \)

\(\min \; c \cdot x \)

\(\text{st} \) \(a_1 \cdot x \geq b_1, \; a_2 \cdot x \geq b_2, \ldots, \; a_m \cdot x \geq b_m \)

\(\text{Max} \; x_1 + x_2 \geq 3 \)
LP: \[\min \frac{c \cdot x}{x} \]
\[\text{st } A x \geq b \]
\[\exists x \]

Polyhedron: \[K \text{ feasible region} \]

\[\min x_1 + x_2 \]
\[x_1 + x_2 \geq 3 \]

Extreme point of \(K \):
\[x \in K \text{ st cannot be written as } \]
\[x = \lambda y + (1-\lambda) z \]
\[\lambda \in [0,1] \]
\[y, z \in K \]

\[y \neq z \] for \(y, z \neq x \)
(2) vertex of $K \in \mathbb{R}^d$

$z \in K$ is a vertex if

$\exists C \in \mathbb{R}^d$ for which z is the unique minimizer in K

$\forall y \neq z \quad C^Ty > C^Tz$

(3) basic feasible solution of $K \subseteq \mathbb{R}^d$ (bfs)

x is bfs of K if $z \in K$ and

\exists d linearly independent defining constraints of K s.t.

x is tight for those constraints

satisfies equality
Theorem: \(K \) be a polyhedron, \(x \) is extreme pt.
\[\Rightarrow x \text{ is a vertex} \]
\[\Rightarrow x \text{ is bfs.} \checkmark \]

Thm. \(K \) be a polytope,
\[\text{LP} = \min \{ c^T x | x \in K \} \]
has an optimal pt \(x^* \) which is a vertex of \(K \).

"Thm." given an LP can solve it in polynomial time.
\[\rightarrow \text{return a bfs of } K \]

Ellipsoid
Interior Pt Methods
Convex Hull:

$S \subseteq \mathbb{R}^d$

$\text{CH}(S)$

Fact: $K = \text{CH}($extreme pts of K)$

Perfect Matchings

$G = (L, R, E)$

$M \subseteq E$

$\chi_M \in \{0, 1\}^E$

$M = \{\chi_M : M \text{ is a perfect matching in } G\}$

$C_{PM}(G) = \text{CH}(M)$

Minimize $\sum c_i x_i$ subject to $x \in C_{PM}(G)$ and all PMS are corners of polytope
"Compact" way to write the PM polytope

\[K_{PM}(G) = \{ x \in \mathbb{R}^{1 \times E} \mid \begin{align*}
\sum_{i \in E} x_{ij} &= 1 \quad \forall i \in E, \\
\sum_{j \in E} x_{ij} &= 1 \quad \forall j \in E, \\
1 \geq x_{ij} &\geq 0
\end{align*} \} \]

Thm: for bipartite \(G \), \(K_{PM}(G) = C_{PM}(G) \)

Fact: for non-bipartite \(G \), not true \(K_{PM}(G) \not\subseteq C_{PM}(G) \)
(c ∈ K) ∀M, \chi_M \in K \Rightarrow C \subseteq K

(K ∈ C) \forall x^* \in K, x^* \in C

\Rightarrow \chi^* = \chi_M \text{ for some } P, M.

Proof:

\text{Support}(x^*) = \{e \in E \mid x^*_e > 0\}

\Rightarrow \text{Support has no cycle.}

\chi = \frac{1}{2} \chi + \frac{1}{2} \chi

\Rightarrow \chi \text{ contradicts } x^* \text{ in extreme pt.}

\Rightarrow \text{Support has no cycle.} \Rightarrow \text{Support}(x^*) \text{ is a forest.}
\[CC = K \]
\[X = c \cap C \]
\[\Rightarrow x^* \subseteq \chi_M \text{ for some } p_M \]
\[p_{2}: \text{every \ line \ of \ } K \text{ \ is \ a \ matching \ (perfect)} \]

\[k = \text{free } K \text{ \ if \ } \sum_{x \in K} x = 1 \]

\[x = 0 \Rightarrow x_0 \approx 0 \]

\[\sum_{x \in K} x = 1 \text{ \ for \ } \forall \ v \in K \text{ \ such \ that} \ x \in K \]

\[x = 0 \Rightarrow x_0 \approx 0 \]

\[\sum_{x \in K} x = 1 \text{ \ for \ } \forall \ v \in K \text{ \ such \ that} \ x \in K \]
\(Ax = b \)
\[x_i = \frac{\det(A|b|_i)}{\det(A)} \]

\(C x^* = 1 \)
\[x_e^* = \frac{\det(C[1] e)}{\det(C)} \]
\[\det(C) \in \mathbb{Z} + i\mathbb{Z} \]

\(C \) is non-singular

Claim

\(\min \{ c : x \in K_{PM} \} \)