Graduate AI
Lecture 2: Search I

Instructors:
Nihar B. Shah (this time)
J. Zico Kolter

Carnegie Mellon University
EXAMPLE: PATHFINDING

Best route?
EXAMPLE: 8-PUZZLE

Fewest “moves”?
SEARCH PROBLEMS

• A search problem has:
 o States (configurations)
 o Start state and goal states
 o Successors: mapping of states to (action,state,cost) triples

High-level objective: Find minimum-cost path from s to t in a computationally efficient manner
EXAMPLE: PATHFINDING
EXAMPLE: PATHFINDING
EXAMPLE: PATHFINDING
EXAMPLE: PATHFINDING
Graph Representation

Cost ≥ 0 between each pair of vertices x & y

High-level objective: Find minimum-cost path from s to t in a computationally efficient manner
Example: 8-Puzzle
Tree Search

Inputs:
• Problem instance
• “Expansion strategy”

Output:
• Path from s to t
RECALL: BREADTH FIRST SEARCH

- Graph with each cost 1

- Define $g(x) = \text{cost till } x$

- Expansion strategy: Expand node with minimum g

```
g = 0
#1
```

```
g = 1
#2
```

```
g = 2
#3
```

```
g = 2
g = 2
```

```
g = 2
```

```
g = 3
```

```
⋯
```
Tree Search

function TREE-SEARCH(problem, strategy)

set of frontier nodes contains the start state of problem

loop

• if there are no frontier nodes then return failure

• choose a frontier node for expansion using strategy

• if the chosen node is t then return the corresponding solution

• else expand the node and add the resulting nodes to the set of frontier nodes
Uniform Cost Search Algorithm

Define $g(x) = \text{cost till } x$

Strategy: Expand node with smallest g
UNINFORMED VS. INFORMED

• Uniform cost search uses no information about the problem other than the edge costs
 o “Uninformed” search

• Often we may have more information…
 o “Informed” search
EXAMPLE: PATHFINDING

“Going this direction is generally a good idea”
Example: 8-Puzzle

```
5 2
6 1 3
7 8 4
```

```
1 2 3
4 5 6
7 8
```

“Having more blocks in their correct position is generally a good idea”
INFORMED SEARCH

• Additional information: For each vertex \(x \), given \(h(x) = \) heuristic evaluation of cost from \(x \) to \(t \)

\[
\begin{align*}
h_0 &= h(s) = 6 \\
h_1 &= h(c) = 7 \\
h_2 &= h(b) = 6 \\
h_3 &= h(a) = 5 \\
h_4 &= h(d) = 2 \\
h_5 &= h(e) = 1 \\
h_6 &= h(t) = 0
\end{align*}
\]

• \(h(t) = 0 \)
Greedy Search Using Heuristic

- **Strategy:** Expand node with min. value of h

![Diagram of graph with nodes and edges labeled with h values.](image)
A* Tree Search

- **Strategy:** Expand node with min. value of $f(x) = g(x) + h(x)$

![Graph](image)

- **Question:** Which node is expanded fourth?
A* Tree Search

- Should we stop when we discover a goal?

- No: Only stop when we expand a goal

Slide adapted from Dan Klein
Find minimum-cost path from s to t in a **computationally efficient** manner
A* DOESN’T ALWAYS WORK

- Issue: Good path has pessimistic estimate
- Circumvent this issue by being optimistic!

Slide adapted from Dan Klein
Admissibility Heuristics

h is admissible if for all x,

$$h(x) \leq h^*(x),$$

where h^* is the cost of the optimal path from x to t.

- Aerial distance in pathfinding
- $h \equiv 0$
Optimality of A* Tree Search

Theorem: If the heuristic is admissible, then the path returned by A* tree search has minimum cost.
Proof

- Recall: A* stops when goal t is expanded
- For contradiction, assume t with suboptimal path is expanded before t with optimal path
- There is a node x on the optimal path to t that has been discovered but not expanded
- $f(x) = g(x) + h(x)$
 \[\leq g(x) + h^*(x) \]
 \[= g(t_{opt}) < g(t_{expanded}) = f(t_{expanded}) \]
- x should have been expanded before t! ■

Adapted from Dan Klein
8-puzzle Heuristics

• h_1: #tiles in wrong position

• h_2: sum of Manhattan distances of tiles from goal

• **Question**: Which of these is admissible?

 ◦ Answer: Both

• Heuristic for designing admissible heuristics: relax the problem!
DOMINANCE OF HEURISTICS

• h dominates h' iff $\forall x, h(x) \geq h'(x)$

• h_1: #tiles in wrong position

• h_2: sum of Manhattan distances of tiles from goal

• **Question:** What is the dominance relation between h_1 and h_2?
 - **Answer:** h_2 dominates h_1
8-Puzzle Heuristics

- The following table gives the number of nodes expanded by A* with the two heuristics, averaged over random 8-puzzles, for various solution lengths:

<table>
<thead>
<tr>
<th>Length</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1301</td>
<td>211</td>
</tr>
<tr>
<td>18</td>
<td>3056</td>
<td>363</td>
</tr>
<tr>
<td>20</td>
<td>7276</td>
<td>676</td>
</tr>
<tr>
<td>22</td>
<td>18094</td>
<td>1219</td>
</tr>
<tr>
<td>24</td>
<td>39135</td>
<td>1641</td>
</tr>
</tbody>
</table>

- Moral: Good heuristics are crucial!
Tree Search

- Tree search can expand many nodes corresponding to the same state

- In a rectangular grid:
 - Search tree of depth d has 4^d leaves
 - There are only $4d$ states at Manhattan distance exactly d from any given state
Graph search is the same as tree search, except that it never expands a node twice.

function GRAPH-SEARCH(problem, strategy)
set of frontier nodes contains the start state of problem
loop
 • if there are no unexpanded frontier nodes then return failure
 • choose an unexpanded frontier node for expansion using strategy, and add it to the expanded set
 • if the node contains a goal then return the corresponding solution
 • else expand the node and add the resulting nodes to the set of frontier nodes, only if not in the expanded set
A* Graph Search

• Does A* graph search always find the optimal path under an admissible heuristic?

• No!

Adapted from Dan Klein
CONSISTENT HEURISTICS

- $c(x, y) =$ cost of cheapest path from x to y
- h is **consistent** if for every two nodes x, y,
 \[h(x) \leq c(x, y) + h(y) \]

Question: What is the relation between admissibility and consistency?

1. Admissible \Rightarrow consistent
2. **Consistent \Rightarrow admissible**
3. They are equivalent
4. They are incomparable

- Set $y = t$ above
- Graph in previous slide
8-puzzle Heuristics, Consistent?

- h_1: #tiles in wrong position
- h_2: sum of Manhattan distances of tiles from goal

Poll: Which of these is consistent?
- Answer: Both

- Heuristic for designing admissible heuristics: relax the problem!

Consistent heuristics yield guarantees for A* graph search (next class)
SUMMARY

• Terminology and algorithms:
 o Search problems
 o Uninformed vs. informed search
 o Tree search, graph search, uniform cost search, greedy, A*
 o Admissible and consistent heuristics

• Theorems:
 o A* tree search is optimal with admissible h
 o A* graph search is optimal with consistent h

• Big ideas:
 o Don’t be too pessimistic!