Graduate AI

Lecture 3: Search II

Teachers:
Zico Kolter
Ariel Procaccia (this time)
A* IS OPTIMALLY EFFICIENT

• We say that node x is surely expanded by A* tree search if $f(x) < f(t^*)$, where t^* is the optimal goal.

• Theorem [Dechter and Pearl 1985]: Any tree search algorithm that is optimal given a consistent heuristic will expand, whenever the heuristic is consistent, all nodes surely expanded by A*.
Proof of Theorem

- Let \(I \) be an instance with graph \(G \) and consistent heuristic \(h \)
- Assume node \(x \) is surely expanded by A*
- Denote \(f(x) < f(t^*) = C^* \)
- Let \(B \) be an optimal algorithm that does not expand \(x \)
Proof of Theorem

- Create G' by adding a new goal t, and an edge (x, t) with cost $h(x)$
- h' is the same as h, and $h'(t) = 0$
- **Lemma:** h' is consistent
 - Clearly true on pairs that do not include t
 - For pairs (y, t),
 $$h'(y) = h(y) \leq c(y, x) + h(x) = c(y, t) = c(y, t) + h'(t)$$
Proof of Theorem

- On the new instance I' defined by G' and h', A* will find the goal t with cost
 \[g(t) + h'(t) = g(x) + h(x) < C^* \]
- Because B does not expand x, I' looks identical to I, and B will find a solution of cost C^*
- This is a contradiction to the assumption that B is optimal whenever the heuristic is consistent \blacksquare

15780 Spring 2018: Lecture 3
Why does the proof fail if we replace “consistent” with “admissible”?
A* is optimally efficient

- In fact, the theorem is false when the heuristic is only admissible
- In the example on the right, algorithm B will find the optimal solution while expanding fewer nodes than A*

Alg B: Conduct exhaustive search except for expanding a; then expand a only if it has the potential to sprout cheaper solution
Application: Motion Planning

"His path-planning may be sub-optimal, but it's got flair."
Motion planning

- Navigating between two points while avoiding obstacles
- A first approach: define a discrete grid
- Mark cells that intersect obstacles as blocked
- Find path through centers of remaining cells
Is this approach optimal? Complete?
Cell decomposition

- Distinguish between
 - Cells that are contained in obstacles
 - Cells that intersect obstacles
- If no path found, subdivide the mixed cells
Is it complete now?

- An algorithm is **resolution complete** when:
 a. If a path exists, it finds it in finite time
 b. If a path does not exist, it returns in finite time
- Assume obstacles are closed sets, so free space is an open set
- **Poll 1:** Cell decomposition satisfies:
 1. a but not b
 2. b but not a
 3. Both a and b
 4. Neither a nor b
Cell decomposition

Shortest paths through cell centers

Shortest path
Solution 1: A* Smoothing

- Allows connection to further states than neighbors on the grid
- Key observation:
 - If x_1, \ldots, x_n is valid path
 - And x_k is visible from x_j
 - Then $x_1, \ldots, x_j, x_k, \ldots, x_n$ is a valid path
SMOOTHING WORKS!

--- A shortest path through cell centers
----- Shortest path
SMOOTHING DOESN’T WORK!

A shortest path through cell centers

Shortest path
Solution 2: Theta*

- Allow parents that are non-neighbors in the grid to be used during search
- Standard A*
 - $g(y) = g(x) + c(x, y)$
 - Insert y with estimate
 \[f(y) = g(x) + c(x, y) + h(y) \]
- Theta*
 - If parent(x) is visible from y, insert y with estimate
 \[f(y) = g(\text{parent}(x)) + c(\text{parent}(x), y) + h(y) \]
Theta\(^*\) *works*!

Theta\(^*\) path, I think 😊

Shortest path
Theta* works!

[Nash, AIGameDev 2010]
THE OPTIMAL PATH

• Polygonal path: sequence of connected straight lines
• Inner vertex of polygonal path: vertex that is not beginning or end
• Theorem: assuming (closed) polygonal obstacles, shortest path is a polygonal path whose inner vertices are vertices of obstacles
Proof of Theorem

- Suppose for contradiction that shortest path is not polygonal
- Obstacles are polygonal \(\Rightarrow \)
 - \(\exists \) point \(p \) in interior of free space such that “path through \(p \) is curved”
- \(\exists \) disc of free space around \(p \)
- Path through disc can be shortened by connecting points of entry and exit
Proof of Theorem

- Path is polygonal!
- Vertex cannot lie in interior of free space, otherwise we can do the same trick
- Vertex cannot lie on an edge, otherwise we can do the same trick □
How would we define a graph on which A* would be optimal?
Visibility Graph

Vertices = vertices of polygons and s, t
Edges = all (x, y) such that y is visible from x
VISIBILITY GRAPH

• **Poll 2:** Let n be the total number of vertices of all polygons. How many edges will the optimal path in the visibility graph traverse in the worst case?

 1. $\Theta(\sqrt{n})$
 2. $\Theta(n)$
 3. $\Theta(n^2)$
 4. $\Theta(n^3)$
SUMMARY

• Terminology and algorithms:
 o Cell decomposition
 o Resolution completeness
 o Theta*

• Theorems:
 o A* is optimally efficient
 o Geometry of shortest path with polygonal obstacles

• Big ideas:
 o A* can be modified to work well in continuous spaces