
15780: GRADUATE AI (SPRING 2019)

Homework 3: Deep Learning and Probabilistic Modelling

Release: March 21, 2019,
Due: April 4, 2019, 5:00pm

We will use scientific Python for the implementation portions in this course. If you have not used Python be-
fore, we recommend downloading the Anaconda distribution (https://www.continuum.io/downloads)
and looking through introductory resources like Google’s Python Class (https://developers.google.
com/edu/python/) and the Python Beginner’s Guide (https://wiki.python.org/moin/BeginnersGuide).
If you have not used scientific Python before, we recommend following introductions to NumPy (http:
//www.numpy.org/) and matplotlib (http://matplotlib.org/).

Please make sure your code submission works with the grading environment, which uses Python 3.7
and numpy 1.15.0.

1 Probability (20 points) [Ivan]

1.1 Probabilistic warm-up

1. [3 points] Construct 3 random variables X1, X2 and Z such that X1 and X2 are independent given Z,
but are NOT marginally independent (you need to formally show this).

2. [3 points] Construct 3 random variables X1, X2 and Z such that X1 and X2 are marginally indepen-
dent, but are NOT independent given Z (you need to formally show this).

3. [3 points] Prove that if X1 and X2 are independent, then Cov(X1, X2) = 0. Let now Y1 and Y2 be
random variables such that Cov(Y1, Y2) = 0, can we conclude that Y1 and Y2 are independent? If yes,
provide a proof, if no, provide a counterexample.

Clarification for 3:1 for this question feel free to assume that all random variables are discrete and
can take only finite set of values.

1clarification was added
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1.2 Regressions

Consider a linear regression model:

y(i) = β1x
(i)
1 + β2x

(i)
2 + ε(i),

where ε(i) ∼ N (0, σ2). Assume we observe m triples (y(1), x(1)1 , x
(1)
2 ), . . . , (y(m), x

(m)
1 , x

(m)
2 ).

1. [3 points] Show that MLE estimate of β = (β1, β2) coincides with the solution of least squares
problem:

minimizeβ
1

2
‖Xβ − y‖22

Hint: Recall that MLE chooses the parameter that maximizes the probability of observing the data.

2. [4 points] Now assume that we put a prior on coefficients:

β1 ∼ L(0, γ) β2 ∼ L(0, γ),

where L(0, γ) is the Laplace distribution with the density:

p(x) =
1

2γ
exp

{
−|x|
γ

}
.

Show that MAP estimate of β = (β1, β2) coincides with the solution of the following regularized least
squares problem

minimizeβ

(
1

2
‖Xβ − y‖22 +

λ

2
‖β‖1

)
for some value of λ. Specify that value of λ.

Hint: Recall that MAP estimates maximizes the posterior probability p(β|Data).

1.3 MLE vs MAP

1. [4 points] Let X1, . . . , Xn be i.i.d. from Bern(θ) (Bern(θ) is a Bernoulli distribution with probability
of success θ) and assume we want to estimate θ. Show that if we put uniform prior on θ:

θ ∼ U([0, 1]),

then MLE will coincide with MAP.

Hint: Use the Bayes rule.
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2 Playing Bayes-Ball with LDA (45 points) [Ivan]

In this section, we will understand conditional independencies between variables in a Bayesian network.
Specifically, we will consider the Bayesian network corresponding to the Latent Dirichlet Allocation (LDA)
generative model for documents.

The LDA Model. We want to model M documents where each document (indexed as i = 1, . . .M ) is
represented as a sequence ofN words wi,j for j = 1, . . . , N . Assume that each word belongs to a dictionary
of D words. Under the LDA model, we assume there also exists a set of K topics, where each topic defines
a distribution over words. Furthermore, each document corresponds to a distribution over topics. We first
‘generate’ these topic distributions for each document and the word distributions for each topic, and then
‘generate’ the words in the document using these distributions. To generate these distributions, we fix some
prior distributions Dtopics and Dwords over the spaces {(c1, c2, . . . , cK)|

∑K
k=1 ck = 1, ck ∈ [0, 1] ∀k} and

{(c1, c2, . . . , cD)|
∑D
d=1 cd = 1, cd ∈ [0, 1] ∀d} respectively2. Then:

• For each document i = 1, . . .M , we sample θi ∼ Dtopics, that defines the parameters of the topic
distribution for that document.

• For each topic k = 1, . . .K, we sample φk ∼ Dwords, that defines the parameters of the word distribu-
tion for that topic.

Having generated the above two sets of parameters, we generate word wi,j as follows:

• Sample the topic of wordwi,j (denoted by zi,j) from the categorical distribution over topics {1, . . .K}
(defined by the topic distribution of document i), i.e. Categorical(θi).

• Sample wi,j from the categorical distribution over the D words in the dictionary (defined by the word
distribution of topic zi,j), i.e. Categorical(φzi,j ).

Bayesian network for the LDA model. Observe that the joint probability distribution for the random
variables in the LDA model can be written as:

p(θ, z, w, φ) =

(∏
k

p(φk)

)(∏
i

p(θi)

)∏
i,j

p(zi,j | θi)

∏
i,j

p(wi,j | zi,j , φ)

 , (1)

where each of the conditional probabilities has been defined by the generative model. Observe that this
factorization corresponds to a Bayesian network, say GLDA, with a node corresponding to each random
variable in the model. In this problem, we will study the conditional independencies represented by this
Bayesian network graph GLDA.

Bayes-Ball Algorithm. The Bayes-Ball algorithm is a technique to infer conditional independencies
between the variables in a Bayesian network. Consider a Bayesian network G over a set of variables
X1, X2, . . . , XT . Assume we have observed a subset of variables, K = {Xi : Xi is observed}. Let J

2In the actual LDA model, Dtopics and Dwords are both Dirichlet distributions, thus giving the model its name. However, for the
purposes of this question, we will keep it a bit more general.
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be a subset of the unobserved variables. The Bayes-Ball algorithm finds the set I of all variables that are
conditionally independent of J according to the Bayesian network graph G3, given that the variables in K
are observed i.e., the set I = {Xi : Xi ⊥ XJ |K}. The algorithm places a ball at each of the nodes4 in J
and sends these around to other nodes in the graph according to some rules. The unobserved variables in the
graph not in J that never received the ball during the Bayes-Ball game are added to I.

Figure 1: Illustration of the Bayes-Ball game: Observed nodes are shaded in grey.

The algorithm is as follows (illustrated in Figure 1):

1. Every node that belongs to J receives a ball (as if the ball was sent by one of its children5).

2. When a node Xj receives a ball:

(a) If the ball was sent by a child of Xj :

i. If Xj ∈ K, do nothing (i.e., the ball never moves from there!).

ii. If Xj /∈ K, send a copy of the ball to all the parents and all the children of Xj (including
the node that sent this ball!).

(b) If the ball was sent by a parent of Xj :

i. If Xj ∈ K, then send a copy of the ball to each of Xj’s parents (including the parent who
sent it!).

ii. If Xj /∈ K, then send a copy of the ball to each of Xj’s children.

3. Finally, I is the set of all unobserved variables in the graph that never received a ball. 6

3Note that a Bayesian network is essentially a representation for a family of joint distributions over the T variables, that can be
factorized in a specific way. The structure of the network allows us to infer certain conditional independencies that every distribution in
the family must satisfy. However, each distribution might have certain independencies specific to it that the Bayesian network may not
represent. The Bayes-Ball algorithm only recovers the independencies encoded by the network.

4For simplicity, we will use the term ‘node’ to refer to the variable corresponding to the node and vice versa.
5This means you must apply step 2a at all these nodes.
6It may not be clear when the given algorithm terminates. You may assume that when a node receives the ball from a specific

direction for the second time, it does nothing.
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Conditional Independences in LDA. We will study some of the conditional independencies in the
Bayesian network GLDA of the LDA model by: (1) applying the Bayes-Ball algorithm to GLDA, and (2)
deriving them from first principles using the joint distribution. For the rest of this homework, you can as-
sume that we have just 2 documents, 2 words per document and 2 topics, i.e. M = N = K = 2 (although
the results hold in general). To be able to run the Bayes-Ball algorithm easily, draw out the Bayesian network
GLDA for these parameters. For simplicity, you might also want to write out equation (1) for the special case
of M = N = K = 2.

1. [13 points] Let i be a specific document and j be a specific word position. Suppose we observe zi,j
(the topic of word wi,j). Is θi conditionally independent of wi,j in GLDA?

(a) Run the Bayes-Ball algorithm to show that indeed θi ⊥ wi,j |zi,j . You must place the ball in the
node of either θi or wi,j and argue why it will never be received by the other node.

(b) Next, prove this result starting from the factorized joint distribution given in equation (1) and
using first principles from probability theory.

2. [13 points] Let i be a specific document, and j1, j2 be two distinct word positions. Is zi,j1 independent
of zi,j2 in the Bayesian network when nothing is observed i.e., is zi,j1 ⊥ zi,j2?

(a) Run the Bayes-Ball algorithm to show that zi,j1 and zi,j2 are actually dependent in GLDA. You
must place the ball at one of these nodes and state the steps of the given algorithm by which the
ball will be received by the other node.

(b) Verify the result obtained above by constructing a probability distribution that can be represented
by the LDA model and show that zi,j1 and zi,j2 are not independent for this distribution.

Hints for 2b:

(a) You can design aDtopics such that for some k1 6= k2 and for some k3, p(zi,j2 = k3|zi,j1 = k1) 6=
p(zi,j2 = k3|zi,j1 = k2) under the given generative process.

(b) Consider Dtopics to be equally distributed over exactly two points in its support: one point where
the k1th co-ordinate is 1 and all other co-ordinates are zero, and another point where the k2th
co-ordinate is 1 and all other co-ordinates are zero.

(c) Intuitively, by observing zi,j1 = k1, what can you say about zi,j2? Now make this argument
formal.

3. [13 points] Let i be a specific document, j be a specific word position, and k be a specific topic. Is
zi,j independent of φk in GLDA when wi,j is observed, i.e. is zi,j ⊥ φk|wi,j?

(a) Run the Bayes-Ball algorithm to show that zi,j and φk are actually dependent inGLDA whenwi,j
is observed.

(b) Verify the result obtained above by constructing a probability distribution that can be represented
by the LDA model and show that zi,j and φk are not independent for this distribution, when wi,j
is observed.

Hint for 3b: Consider a distribution Dwords such that every point in its support has exactly one of the
D co-ordinates to be 1 and all other co-ordinates to be 0.
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4. [6 points] Let i1, i2 be two distinct documents. Suppose all the words of document i1 are observed,
and only the first word of document i2 is observed. In other words, the complete set of observed
variables is {wi1,1, wi1,2, . . . , wi1,N , wi2,1}. Now, is the topic of the second word of document i2
(i.e. zi2,2) conditionally independent of the topic distribution of document i1 (i.e. θi1 ) in GLDA? Use
the Bayes-Ball algorithm to answer this query. [You are not required to prove the result from first
principles.]

Hint for Bayes-Ball: X ⊥ Y |Z if and only if Y ⊥ X|Z. So, you can choose the easier of X or Y to release
balls from to run the Bayes-Ball algorithm.

Hints for proving using first principles: Let X denote the set of all variables. And, suppose we want to
prove (or disprove) that X ⊥ Y |Z.

1. For independence, it must be true that p(X|Y, Z) = p(X|Z).

2. By definition of conditional probability p(X|Y,Z) = p(X,Y,Z)
p(Y,Z) .

3. To obtain expressions for both the numerator and denominator, we can marginalize the joint distribu-
tion. Mathematically, p(X,Y, Z) =

∑
X\{X,Y,Z} p(X), and p(Y,Z) =

∑
X\{Y,Z} p(X). [Recall that

we have access to the expression for the joint distribution p(X) from equation (1).]

4. Each summation can be substantially simplified by moving some of the summations inside the factored
p(X), and observing that

∑
U p(U |V ) = 1 for any V , as long as U does not appear in any other parts

of the whole expression.

5. Some terms can be taken completely out of the summation, and canceled if they are common to both
the numerator and denominator.

6. This can help you completely eliminate Y from the expression for p(X|Y,Z), to prove independence.

3 Metropolis-Hastings Implementation [10 points] (Junjue)

This portion is not graded on Autolab. Instead, we will run your code and check your outputs below.

In this section, we will implement the Metropolis-Hastings algorithms to generate samples from the unnor-
malized distribution

p̃(x) = e−x
2

+ 1.3e−(x−2)
2

with a Gaussian sampling function centered at the previous point with some standard deviation σ.

1. [5 points] Run your implementation for every combination of x0 ∈ {−2, 2} and σ ∈ {0.1, 1.0, 10}.
Submit plots (1. samples over time and 2. a histogram) for all of these in your writeup. We will grade
these plots together with your implementation.

2. [3 points] How and why does σ impact the samples? For all three values, you should state what
happens and why it happens.

3. [2 points] What is the impact of x0 on the samples?
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3.1 Getting started
Download the handout source code and edit the mh.py source file. This file contains a main method that
will run your implementation and generate sampling plots and histograms. In this file, finish the Metropolis-
Hastings implementation in the mh function from the description in Slides 17 (Probabilistic Modeling III:
MCMC).

4 Programming a Deep Neural Network [25 points] (Chun Kai)

In Homework 2, you developed a linear classification model to classify MNIST digits. In this homework,
you will implement a deep neural network for the same classification task. As a reminder, MNIST digit
classification is a k-class classification task (where in this case k = 10). Our training set is of the form
(x(i), y(i)), i = 1, . . . ,m, with y(i) ∈ {0, 1}k, where y(i)j = 1 when j is the target class, and 0 otherwise
(i.e., the output is one-hot encoded). Under the model, our hypothesis function ŷ = hθ(x) outputs vectors in
Rk, where the relative size of the ŷj corresponds roughly to how likely we believe that the output is really
in class j. If we want the model to predict a single class label for the output, we simply predict class class j
for which ŷj takes on the largest value.

Our loss function ` : Rk × {0, 1}k → R+ is the softmax loss, given by

`(ŷ, y) = log

 k∑
j=1

eŷj

− ŷT y. (2)

This loss function has the gradient

∇ŷ`(ŷ, y) =
eŷ∑k
j=1 e

ŷj
− y (3)

where the exponent eŷ is taken elementwise.

To repeat a note from last time: In practice, you would probably want to implement regularized loss mini-
mization, but for the sake of this problem set, we’ll just consider minimizing loss without any regularization
(at the expense of overfitting a little bit).

4.1 Implementation task [20 points]

You will implement a deep neural network to classify MNIST digits, trained by stochastic gradient descent.
Specifically, you must implement the following three functions in cls_nn.py, with the inputs and outputs
as described in the comments7.

def nn(x, W, b, f):
"""
Compute output of a neural network.

Input:

7Please make sure to stick to the specified conventions when you submit to autolab.
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x: numpy array of input
W: list of numpy arrays for W parameters
b: list of numpy arrays for b parameters
f: list of activation functions for each layer

Output:
z: list of activationsn, where each element in the list is a tuple:
(z_{i}, z'_{i}),
where z_{i}=f_{i-1}(W_{i-1}z_{i-1}+b_{i-1}) (for i>=2),
z'_{i}=f'_{i-1}(W_{i-1}z_{i-1}+b_{i-1}) (for i>=2),
z_{1}=x and z'_{1}=None.

"""

def nn_loss(x, y, W, b, f):
"""
Compute loss of a neural net prediction, plus gradients of parameters

Input:
x: numpy array of input
y: numpy array of output
W: list of numpy arrays for W parameters
b: list of numpy arrays for b parameters
f: list of activation functions for each layer

Output tuple: (L, dW, db)
L: softmax loss on this example
dW: list of numpy arrays for gradients of W parameters
db: list of numpy arrays for gradients of b parameters
"""

def nn_sgd(X,y, Xt, yt, W, b, f, epochs=10, alpha = 0.005):
"""
Run stochastic gradient descent to solve linear softmax regression.

Inputs:
X: numpy array of training inputs
y: numpy array of training outputs
Xt: numpy array of testing inputs
yt: numpy array of testing outputs
W: list of W parameters (with initial values)
b: list of b parameters (with initial values)
f: list of activation functions
epochs: number of passes to make over the whole training set
alpha: step size

Output: None (you can directly update the W and b inputs in place)
"""
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The size of the inputs W,b,f determine the effective size of the neural network. We have included starter
code that constructs the network in such a format, so you just need to implement the above function. In
particular, a deep network for the MNIST problem, initialized with random weights, with rectified linear
units in all layers except just a linear unit in the last layer, is constructed by the code:

np.random.seed(0)
layer_sizes = [784, 200, 100, 10]
W = [0.1*np.random.randn(n,m) for m,n in zip(layer_sizes[:-1], layer_sizes[1:])]
b = [0.1*np.random.randn(n) for n in layer_sizes[1:]]
f = [f_relu]*(len(layer_sizes)-2) + [f_lin]

In particular, this creates a deep network with 4 total layers (2 hidden layers), of sizes 784 (the size of the
input), 200, 100, and 10 (the size of the output) respectively. This means, for instance, that there will be 3
W terms: W1 ∈ R200×784, W2 ∈ R100×200, and W3 ∈ R10×100.

You’ll use virtually the same SGD procedure as in Homework 2, so the main challenge will be just to
compute the network output and the gradients in the nn and nn loss functions, using the backpropagation
algorithm as specified in the class slides. We have included the various activation functions, which return
both the non-linear function f and its elementsize subgradient f ′.

Note that training a neural network with pure stochastic gradient descent (i.e., no minibatches) can be fairly
slow, so we recommend you test your system on a small subset of (say) the first 1000 training and testing
examples, and only run it on the final data set after you have debugged its performance on a smaller data
set. As a reference point, our (quite unoptimized) implementation takes about a minute per epoch on the full
training set, with the following performance over the first few epochs for the default α = 0.01:

Test Err |Train Err |Test Loss |Train Loss
0.9033| 0.9044| 2.4827| 2.4800
0.0514| 0.0430| 0.1578| 0.1351
0.0349| 0.0265| 0.1218| 0.0829
0.0291| 0.0173| 0.1024| 0.0527
0.0339| 0.0180| 0.1187| 0.0550

4.2 Written portion [5 points]

In addition to the code that you’ll submit (which will be evaluated on simpler toy examples to check for
correctness), also include with your submission

1. A figure showing the training error and testing error versus epoch for the two linear softmax regression
algorithms from Homework 2 (using either your own code or the solution code in cls_nn.py) plus
the neural network, as measured on the full MNIST digit classification data set.

2. A figure showing the average training and testing loss versus epoch for all three algorithms, again as
measured on the MNIST problem.

For the above, you can use 10 epochs and the default learning rates given in the starter code (that is, α = 0.5
for softmax GD, and α = 0.01 for softmax SGD and the neural network).
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5 Submitting to Diderot

Create a tar file containing your writeup for the first two problems and the completed cls_nn.py and
mh.py modules for the programming problems. Make sure that your tar has these files at the root and not in
a subdirectory. Use the following commands from a directory with your files to create a handin.tgz file
for submission.

$ ls
cls_nn.py mh.py writeup.pdf
$ tar cvzf handin.tgz writeup.pdf cls_nn.py mh.py
a writeup.pdf
a cls_nn.py
a mh.py
$ ls
cls_nn.py handin.tgz writeup.pdf mh.py
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