15780: Graduate AI (Spring 2018)

Practice Midterm 2

March 1, 2018

<table>
<thead>
<tr>
<th>Topic</th>
<th>Total Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heuristic Search</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>VC Dimension</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Integer Programming</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Convex Optimization</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1 Heuristic Search [25 points]

Consider the problem of informed search with a heuristic. For each state \(x \), let \(h^*(x) \) be the length of the cheapest path from \(x \) to a goal.

Prove or disprove the following statements:

1.1 [15 points] If \(h(x) = 2h^*(x) \) for all states \(x \), then \(A^* \) tree search with the heuristic \(h \) is optimal.

1.2 [10 points] If \(h \) is a consistent heuristic, \(A^* \) graph search with the heuristic \(h'(x) = h(x)/2 \) is optimal.
2 Learning Theory [25 points]

Determine the VC dimension of the following function classes.

2.1 [15 points] Define \(F \) to be the set of strings of length 3 composed of the symbols 0, 1, and \(* \). Each \(f \in F \) acts as a pattern matcher; i.e., when applied to a binary string \(s \), it either accepts or rejects \(s \). For example, when we apply the schema \(f = 1 \ast \ast \) to the string \(s = 101 \), it accepts, and when we apply \(f \) to \(s' = 010 \), it rejects. What is the VC dimension of \(F \)?

2.2 [10 points] The union of \(n \) intervals on the real line.
3 Integer Programming [25 points]

Consider an undirected graph $G = (V, E)$. A minimum dominating set is a smallest subset S of V such that every node not in S is adjacent to at least one node in S. A minimum independent dominating set is a smallest subset S of V such that (1) every node not in S is adjacent to at least one node in S and (2) no pair of nodes in S are adjacent. In your answer, you can use $N(i)$ to denote the set of neighbors of node i (i.e., $N(i)$ is a set of nodes adjacent to i) for each node $i \in V$. Note that $i \notin N(i)$. You also can use $(i, j) \in E$ to denote the edge between node $i \in V$ and node $j \in V$.

3.1 [15 points] Formulate an integer linear program to find a minimum dominating set.

3.2 [10 points] Formulate an integer linear program to find a minimum independent dominating set.
4 Convex Optimization [25 points]

Consider a linear program of the standard form: minimize $c^T x$ such that $Ax \leq b$. Here $x \in \mathbb{R}^n$ is the vector of variables, and $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$ are constants.

Prove from the definitions that this is a convex program.