
Instructor: Minchen Li

Lec 13: Reduced Order Models

15-769: Physically-based Animation of Solids and Fluids (F23)

Recap: Frictional Self-Contact

Idea: Approximating Contact Forces as Conservative Forces

$$\begin{split} &\int_{\partial\Omega^0} Q_i(\mathbf{X},t) T_i(\mathbf{X},t) ds(\mathbf{X}) \\ &= \int_{\Gamma_D} Q_i(\mathbf{X},t) T_{D|i}(\mathbf{X},t) ds(\mathbf{X}) + \int_{\Gamma_N} Q_i(\mathbf{X},t) T_{N|i}(\mathbf{X},t) ds(\mathbf{X}) \\ &+ \int_{\Gamma_C} Q_i(\mathbf{X},t) T_{C|i}(\mathbf{X},t) ds(\mathbf{X}) + \int_{\Gamma_C} Q_i(\mathbf{X},t) T_{F|i}(\mathbf{X},t) ds(\mathbf{X}). \end{split}$$
 (Here Γ_C can overlap with Γ_D or Γ_N)

Recap: Normal Self-Contact

Barrier Potential

$$\mathbf{T}_{C}(\mathbf{X}, t) = -\frac{\partial b(\min_{\mathbf{X}_{2} \in \Gamma_{C} - \mathcal{N}(\mathbf{X})} \|\mathbf{x}(\mathbf{X}, t) - \mathbf{x}(\mathbf{X}_{2}, t)\|, \hat{d})}{\partial \mathbf{x}(\mathbf{X}, t)}$$

where $\mathcal{N}(\mathbf{X}) = \{\mathbf{X}_N \in \mathbb{R}^d \mid \|\mathbf{X}_N - \mathbf{X}\| < r\}$ is an infinitesimal circle around X with the radius r sufficiently small to avoid unnecessary contact forces between a point and its geodesic neighbors.

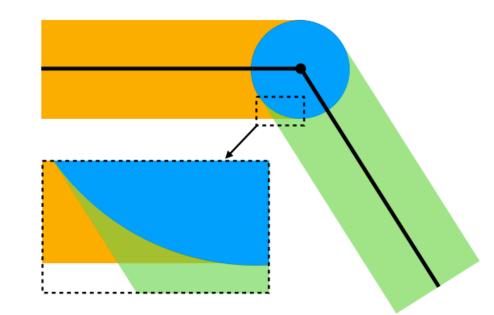
Need
$$\hat{d} \to 0$$
, $r \to 0$, and $\hat{d}/r \to 0$.

Barrier Potential:

$$\int_{\Gamma_C} \frac{1}{2} b(\min_{\mathbf{X}_2 \in \Gamma_C - \mathcal{N}(\mathbf{X})} \|\mathbf{x}(\mathbf{X}, t) - \mathbf{x}(\mathbf{X}_2, t)\|, \hat{d}) ds(\mathbf{X}) \implies \int_{\Gamma_C} \frac{1}{2} \max_{e \in \mathcal{E} - I(\mathbf{X})} b(d^{\text{PE}}(\mathbf{x}(\mathbf{X}, t), e), \hat{d}) ds(\mathbf{X})$$

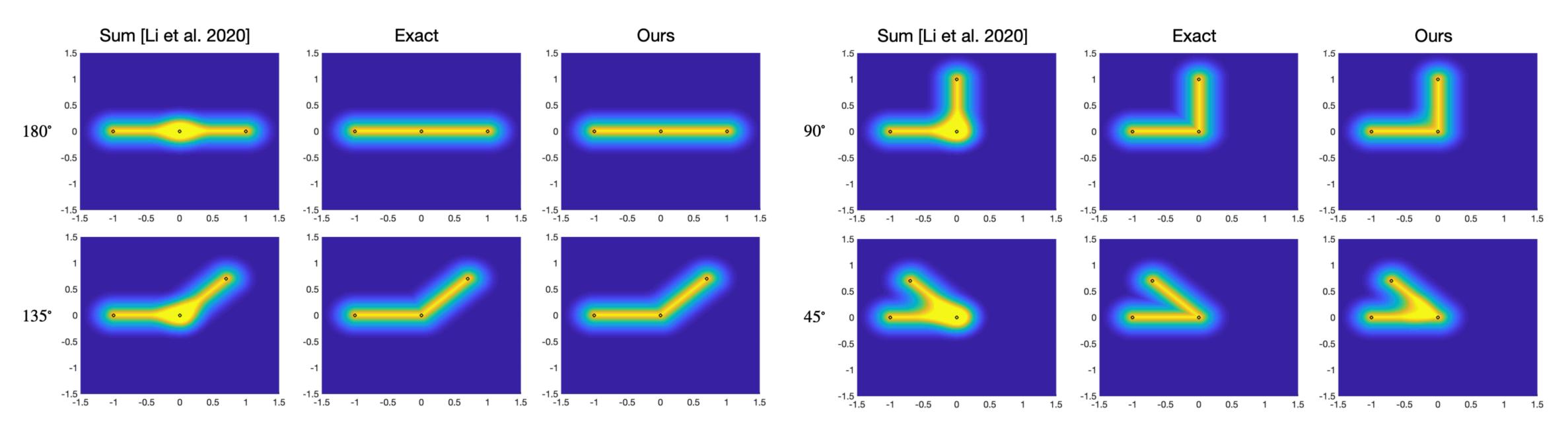
But min() is non-smooth!

b() is monotonically decreasing,


$$\int_{\Gamma_C} \frac{1}{2} \max_{e \in \mathcal{E} - I(\mathbf{X})} b(d^{\text{PE}}(\mathbf{x}(\mathbf{X}, t), e), \hat{d}) ds(\mathbf{X})$$

$$\max(a_1, a_2, ..., a_n) \approx (a_1^p + a_2^p + ... + a_n^p)^{\frac{1}{p}}$$

Accurate when $p \to \infty$: Expensive!

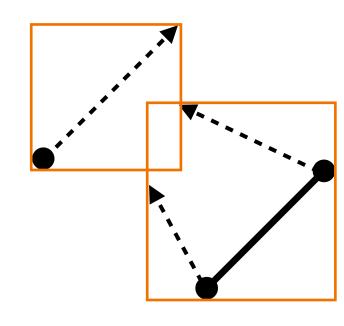

Recap: Normal Self-Contact

Smoothly Approximating the Barrier Potential

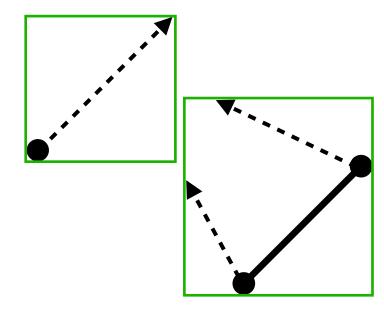
Can subtract the duplicate point-point barrier [Li et al. 2023]:

$$\Psi_c(x) = \sum_{e \in E \setminus x} b(d(x, e), \hat{d}) - \sum_{x_2 \in V_{int} \setminus x} b(d(x, x_2), \hat{d}) \approx \max_{e \in E \setminus x} b(d(x, e), \hat{d})$$

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, Danny M. Kaufman.


Convergent Incremental Potential Contact. Arxiv 2307.15908.

Recap: Broad Phase CCD


- Step 1: query proximal primitive pairs using spatial data structures:
 - Spatial Hash
 - Bounding Box Hierarchy (BVH)

•

• Step 2: Check bounding box overlap:

Case 1: needs narrow phase

Case 2: can skip

Recap: Narrow Phase CCD Additive CCD [Li et al. 2021]

Taking a point-edge pair as an example, the key insight of ACCD is that, given the current positions \mathbf{p} , \mathbf{e}_0 , \mathbf{e}_1 and search directions \mathbf{d}_p , \mathbf{d}_{e0} , \mathbf{d}_{e1} , its TOI can be calculated as

$$\alpha_{\text{TOI}} = \frac{\|\mathbf{p} - ((1 - \lambda)\mathbf{e}_0 + \lambda\mathbf{e}_1)\|}{\|\mathbf{d}_p - ((1 - \lambda)\mathbf{d}_{e0} + \lambda\mathbf{d}_{e1})\|},$$

assuming $(1 - \lambda)\mathbf{e}_0 + \lambda\mathbf{e}_1$ is the point on the edge that \mathbf{p} will first collide with. The issue is that we do not a priori know λ . But we can derive a lower bound of α_{TOI} as

$$\alpha_{\text{TOI}} \ge \frac{\min_{\lambda \in [0,1]} \|\mathbf{p} - ((1-\lambda)\mathbf{e}_0 + \lambda\mathbf{e}_1)\|}{\|\mathbf{d}_p\| + \|(1-\lambda)\mathbf{d}_{e0} + \lambda\mathbf{d}_{e1}\|}$$
$$\ge \frac{d^{\text{PE}}(\mathbf{p}, \mathbf{e}_0, \mathbf{e}_1)}{\|\mathbf{d}_p\| + \max(\|\mathbf{d}_{e0}\|, \|\mathbf{d}_{e1}\|)} = \alpha_l$$

$$\bar{p} \leftarrow \sum_{i} p_i/4$$
for i in $\{0, 1, 2, 3\}$ **do**
 $p_i \leftarrow p_i - \bar{p}$

Algorithm:

Make a local copy of x

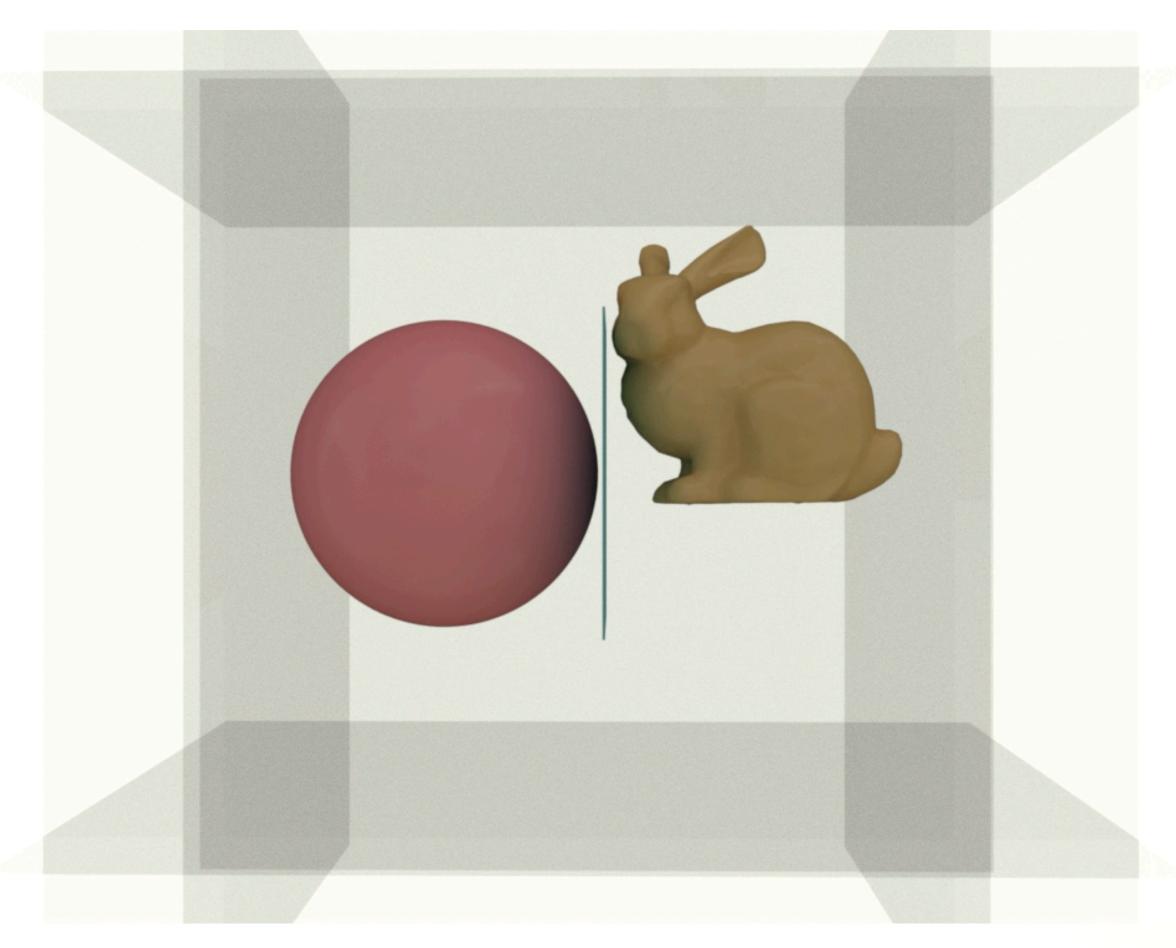
$$\alpha \leftarrow 0$$

While distance not close enough Calculate lower bound α_l

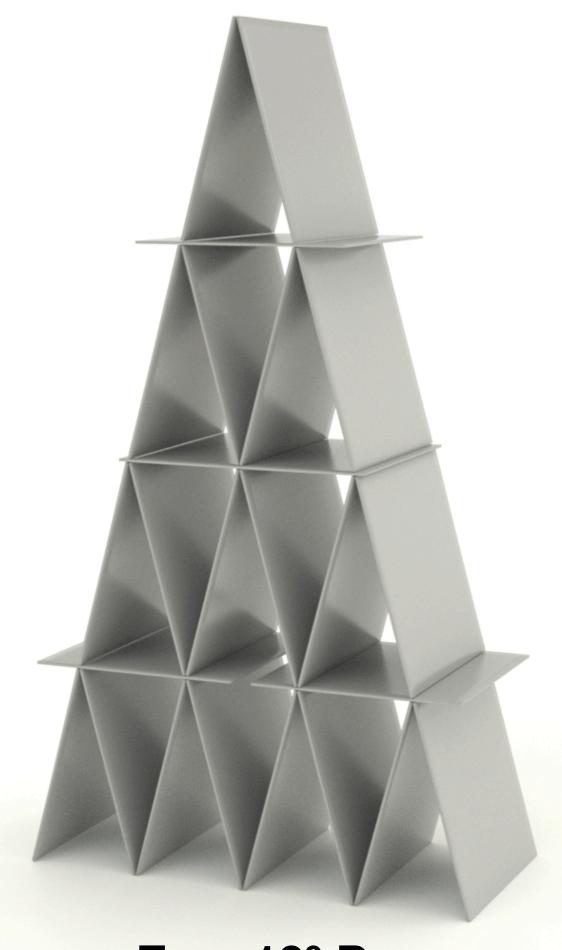
$$x \leftarrow x + \alpha_l p$$

$$\alpha \leftarrow \alpha + \alpha_{l}$$

Return α

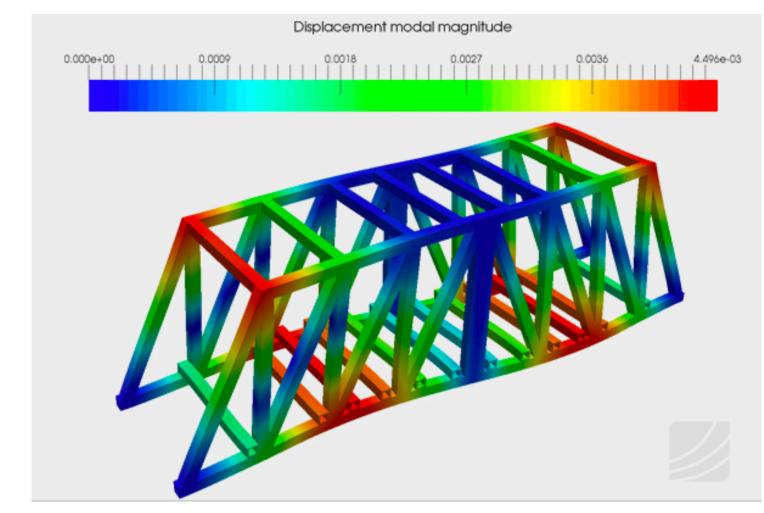

Only need to evaluate distances;

More robust than root-finding;


Generalize to higher-order primitives.

Results: Elastic Body Simulation

With Guarantees of Nonpenetration, Non-inversion, and Convergence

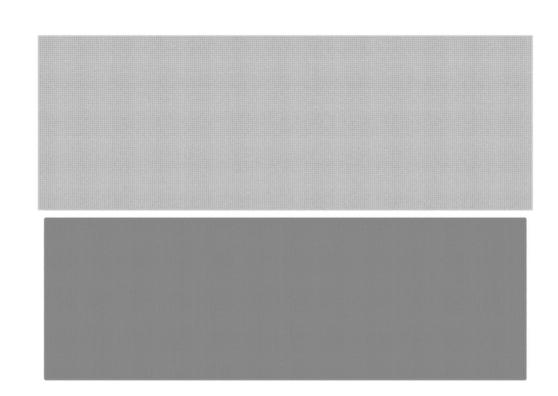


 $E = ~10^9 Pa$

Finite Element Method (FEM)

Material ◆	Young's modulus + (GPa)
Aluminium (₁₃ Al)	68
Bone, human cortical	14
Gold	77.2
Wood, red maple	9.6 – 11.3
High-strength concrete	30

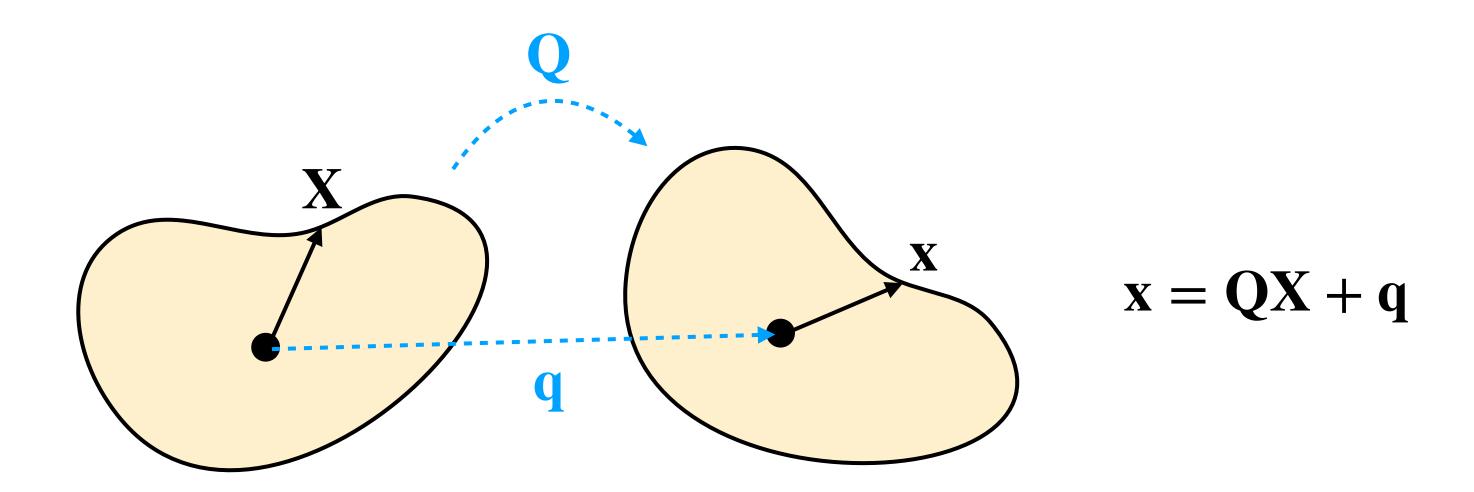
Applications:



Structural Analysis

Can compute stress distribution using FEM

$$\mathbf{s.t.} - \nabla_{\mathbf{x}} \Psi + f^{\mathbf{ext}} = 0$$


volume < target

Rigid Body Representation

If only care about the motions,

Can simply track rotation Q and translation q per body!

Constant deformation gradient per body, No volumetric discretization needed!

Rigid Body Dynamics: Derivation

Full order dynamics:

$$\min_{x} \frac{1}{2} ||x - \tilde{x}^n||_M^2 + h^2 \sum_{x} P(x)$$

Reduced order DOF:

$$\mathbf{x} = \bar{X}Q + \bar{S}q \in \mathbb{R}^{3n}$$

$$\mathbf{x} = \mathbf{Q}\mathbf{X} + \mathbf{q} \in \mathbb{R}^{3} \iff Q \in \mathbb{R}^{9m}, \ \bar{X} \in \mathbb{R}^{3n \times 9m}$$

$$q \in \mathbb{R}^{3m}, \ \bar{S} \in \mathbb{R}^{3n \times 3m}$$

Reduced order dynamics (from subspace optimization):

$$\min_{Q,q} \frac{1}{2} \|\bar{X}Q + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \sum P(\bar{X}Q + \bar{S}q) \quad \text{s.t.} \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I} \quad \forall \mathbf{Q} \quad (\text{or } f(Q) = 0)$$

$$\Longrightarrow$$

$$\bar{X}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{X}^T \nabla P(\bar{X}Q + \bar{S}q) + (\nabla f(Q))^T \lambda = 0$$
 Alternative der
$$\bar{S}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{S}^T \nabla P(\bar{X}Q + \bar{S}q) = 0$$
 • Linear and A Momentum of the following of the properties of the following of the following

Alternative derivations:

- Lagrangian Mechanics;
- Linear and Angular **Momentum Conservations;**

Rigid Body Dynamics: Mass Matrix and Inertia Tensor

Reduced order dynamics (from subspace optimization):

$$\bar{X}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{X}^T \nabla P(\bar{X}Q + \bar{S}q) + (\nabla f(Q))^T \lambda = 0$$

$$\bar{S}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{S}^T \nabla P(\bar{X}Q + \bar{S}q) = 0$$

$$f(Q) = 0$$

• $\bar{X}^T M \bar{X}$ is the mass matrix of Q related to inertia tensor

Calculating $\bar{X}^T M \bar{X}$ without volumetric discretization:

- 1. Convert to continuous form $\int_{\Omega^0} \rho \mathbf{X} \mathbf{X}^T d\mathbf{X}$
- 2. Transform to surface integral using Divergence Theorem
- 3. Discretize the surface integral

Rigid Body Dynamics: Change of Variable

Reduced order dynamics (from subspace optimization):

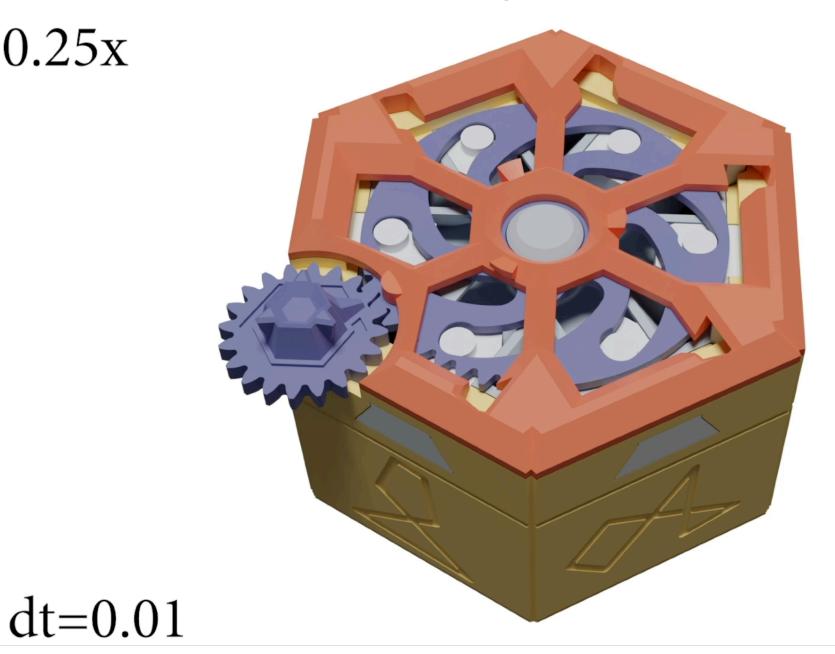
$$\min_{Q,q} \frac{1}{2} ||\bar{X}Q + \bar{S}q - \tilde{x}^n||_M^2 + h^2 \sum P(\bar{X}Q + \bar{S}q) \quad \text{s.t.} \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I} \quad \forall \mathbf{Q} \quad (\text{or } f(Q) = 0)$$

Use rotation vector θ :

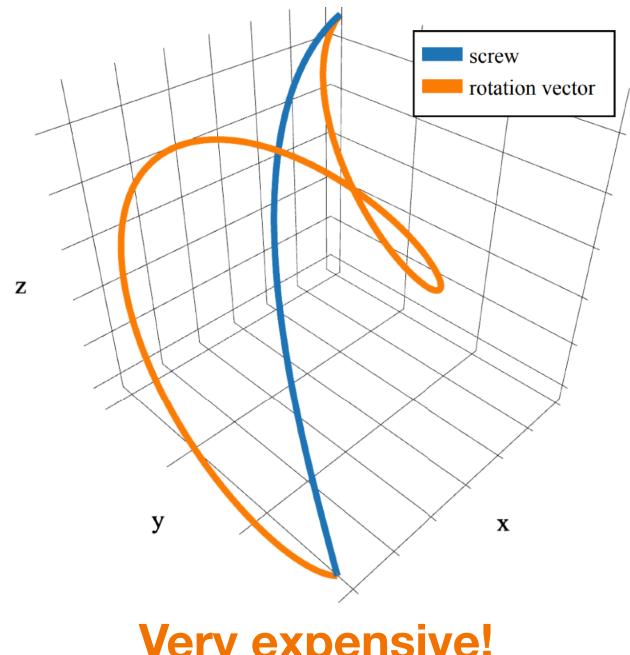
$$\min_{\theta,q} \frac{1}{2} ||\bar{X}R(\theta) + \bar{S}q - \tilde{x}^n||_M^2 + h^2 \sum_{M} P(\bar{X}R(\theta) + \bar{S}q)$$
 Unconstrained! 6 DOF per body!

Rodrigues' Rotation Formula:

$$\mathcal{R}(\theta) = \operatorname{Id} + \sin(\|\theta\|) \left[\frac{\theta}{\|\theta\|} \right] + (1 - \cos(\|\theta\|)) \left[\frac{\theta}{\|\theta\|} \right]^2$$
 Highly nonlinear!


Rigid Body Dynamics: Frictional Contact via IPC [Li et al. 2020]

Reduced order dynamics (from subspace optimization):


 $\min_{\theta,q} \frac{1}{2} \|\bar{X}R(\theta) + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \sum_{\bullet} P(\bar{X}R(\theta) + \bar{S}q) \quad \text{But line search is on } \theta \text{, and } x(\theta) \text{ is nonlinear } x(\theta) = 0$

Just include IPC energies here

0.25x

So CCD is on nonlinear trajectories:

Very expensive!

Rigid-IPC [Ferguson et al. 2021] vs IPC [Li et al. 2020]

Example	runtime (s) (IPC)	runtime (s) (Rigid)	speed-up	iterations (IPC)	iterations (Rigid)
Pendulum	339.7	133.1	2.6x	10K	3K
Double pendulum	914.0	1559.9	0.6x	12K	4K
Arch (25 stones)	26.5	55.8	0.5x	2K	2K
Arch (101 stones)	238.3	487.8	0.5x	4K	5K
Wrecking ball	7179.8	5748.1	1.2x	9K	18K

Rigid-IPC performs well for complex geometries

Enforcing Rigidity via Penalty Method

Reduced order dynamics (from subspace optimization):

$$\min_{Q,q} \frac{1}{2} \|\bar{X}Q + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \boxed{\sum P(\bar{X}Q + \bar{S}q)} \quad \text{s.t.} \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I} \ \forall \mathbf{Q} \ (\text{or} \ f(Q) = 0)$$

$$\boxed{\mathbf{Don't \ need \ elasticity}}$$

Reduced order dynamics with penalty method:

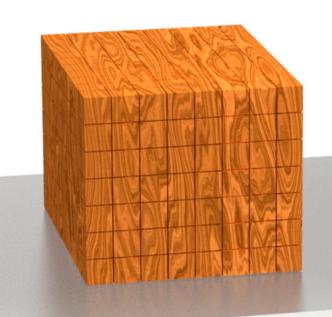
$$\min_{Q,q} \frac{1}{2} ||\bar{X}Q + \bar{S}q - \tilde{x}^n||_M^2 + h^2 \sum_{M} P(\bar{X}Q + \bar{S}q)$$

Use elasticity with large Young's modulus

— the strain energy Ψ is effectively a penalty function for

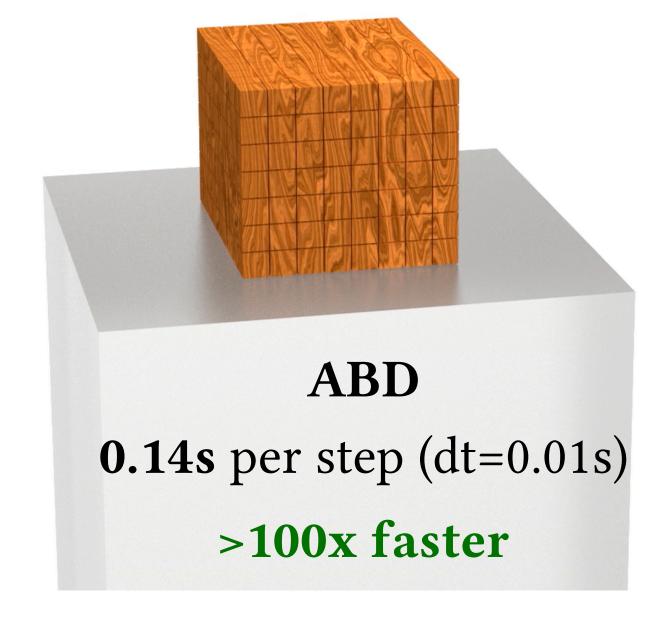
12 DOF per body, still significantly reduced

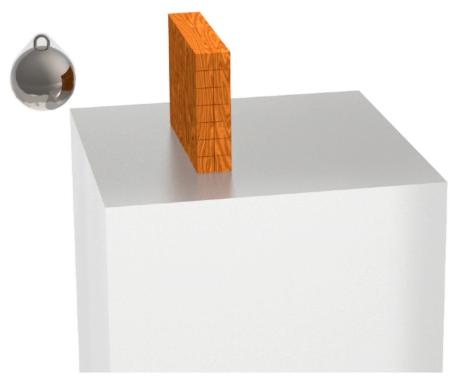
$$x = \bar{X}Q + \bar{S}q$$
 is linear w.r.t. both Q and $q \rightarrow$ linear CCD


A stiff Ψ won't make the problem harder with stiff IPC energies

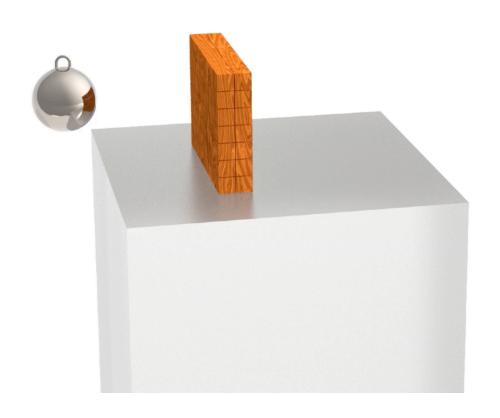
Affine Body Dynamics (ABD)

$$\min_{Q,q} \frac{1}{2} \|\bar{X}Q + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \sum P(\bar{X}Q + \bar{S}q)$$
 Use elasticity with large Young's modulus



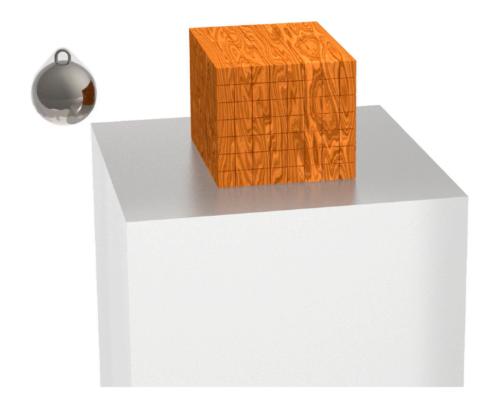

Rigid-IPC **17.6s** per step (dt=0.01s)

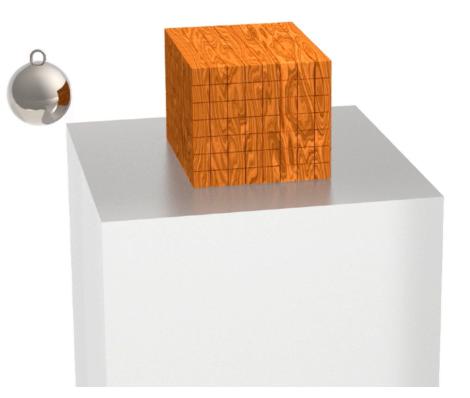
14K triangles 575 bodies


Bullet v.s. ABD

3.5K triangles142 bodies

Bullet


58ms per 1/240s step 82ms per 1ms step


ABD

41ms per 1/240s step 19ms per 1ms step >4x faster

11K triangles562 bodies

809ms per 1/240s step 804ms per 1ms step

328ms per 1/240s step 102ms per 1ms step >8x faster

ABD in Another Perspective

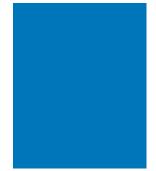
X:

Affine Deformation Modes

$$\mathbf{x} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{X} + \begin{bmatrix} e \\ f \end{bmatrix}$$

$$\Delta a$$

0.3


0.8

1.3

DOF: a, b, c, d, e, f

$$\Delta \epsilon$$

$$\mathbf{x} = A \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = aA_1 + bA_2 + \dots$$

$$\Delta b$$

Deformation

modes (linearly independent displacement fields)

Linear Modal Analysis

$$\mathbf{x} = A \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} \quad \begin{array}{l} \textbf{Deformation} \text{ (linearly independent displacement fields)} \\ \textbf{modes} \\ \textbf{modes} \\ \textbf{(linearly independent displacement fields)} \\ \textbf{Explain the problem of the problem o$$

Assume linear elasticity problem: $M\ddot{u} + Ku = f$ s.t. Sx = 0 (Dirichlet BC)

Intuition: Meaningful deformation modes are those don't generate large forces

Can solve the generalized Eigenvalue problem to find them: $\bar{K}y = \lambda \bar{M}y$

(where $ar{K}$ and $ar{M}$ do not account for BC nodes)

(Take the Eigenvectors with smallest Eigenvalues as modes.)

Linear Modal Analysis: Time Integration

$$\mathbf{x} = A \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} \quad \begin{array}{l} \textbf{Deformation} \text{ (linearly independent displacement fields)} \\ \textbf{Can solve } \bar{K}y = \lambda \bar{M}y \text{ and take Eigenvectors} \\ \textbf{with the smallest Eigenvalues as more modes.} \\ \hline \textbf{The Eigenvectors will be orthonormal w.r.t. } \bar{M}, \text{ i.e. } (y^i)^T M y^j = \delta_{ij}. \\ \hline \end{array}$$

Now let u=x-X=Uz, where $z\in\mathbf{R}^k$ are the reduced DOF, $U\in\mathbb{R}^{3n\times k}$ formed by the Eigenvectors

Plugging in Mii + Ku = f, ignoring BCs for now:

$$MU\ddot{z}+KUz=f$$
 $\Lambda\in\mathbb{R}^{k imes k}$ is a diagonal matrix of Eigenvalues $U^TMU\ddot{z}+U^TMU\Lambda z=U^Tf$ Left-multiply U^T on both sides $\ddot{z}+\Lambda z=U^Tf$ Diagonal system! Super fast!

Linear Modal Analysis: Effectiveness

Works well for small deformations:

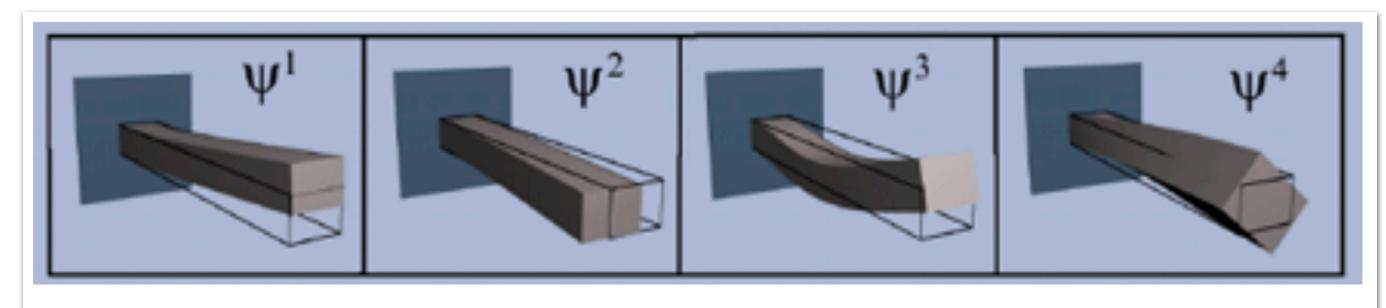


Figure 2: Linear modes for a cantilever beam.

Consistent with our knowledge of linear elasticity

However:

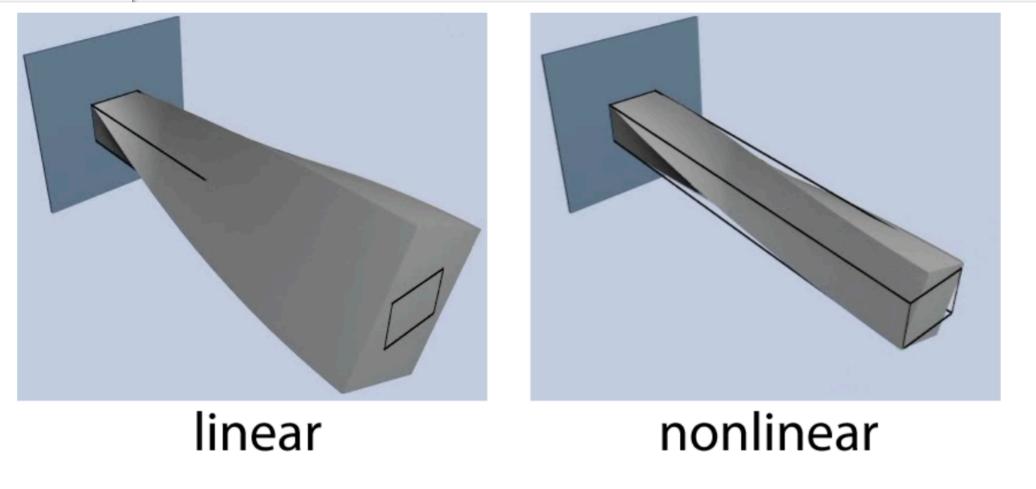


Figure 3: Model reduction applied to a linear and nonlinear system.

Nonlinear Elasticity, Linear Modes

$$M\ddot{u} + f^{int}(u) = f$$
 or equivalently, using Incremental Potential: $\min_{x} \frac{1}{2} ||x - \tilde{x}^n||_M^2 + h^2 \sum_{x} P(x)$

Plugging in
$$u = Uz$$
: $\min_{z} \frac{1}{2} ||X + Uz - \tilde{x}^n||_M^2 + h^2 \sum_{z} P(X + Uz)$ (Can compute U using $\nabla^2 P(X)$)

Gradient:
$$U^TM(X + Uz - \tilde{x}^n) + h^2 \sum U^T \nabla P(X + Uz)$$

Hessian:
$$U^TMU + h^2 \sum U^T \nabla^2 P(X + Uz)U$$

Issue 1: Hessian can be dense!

Solution: use locally supported modes, e.g. Cage-based deformation, Medial Axis Mesh [Lan et al. 2021]

Issue 2: Calculating ∇P and $\nabla^2 P$ are still slow (requiring full space computations)

Solution: use numerical integration to approximate Gradient and Hessian, minimizing the number of quadratures [An et al. 2008]

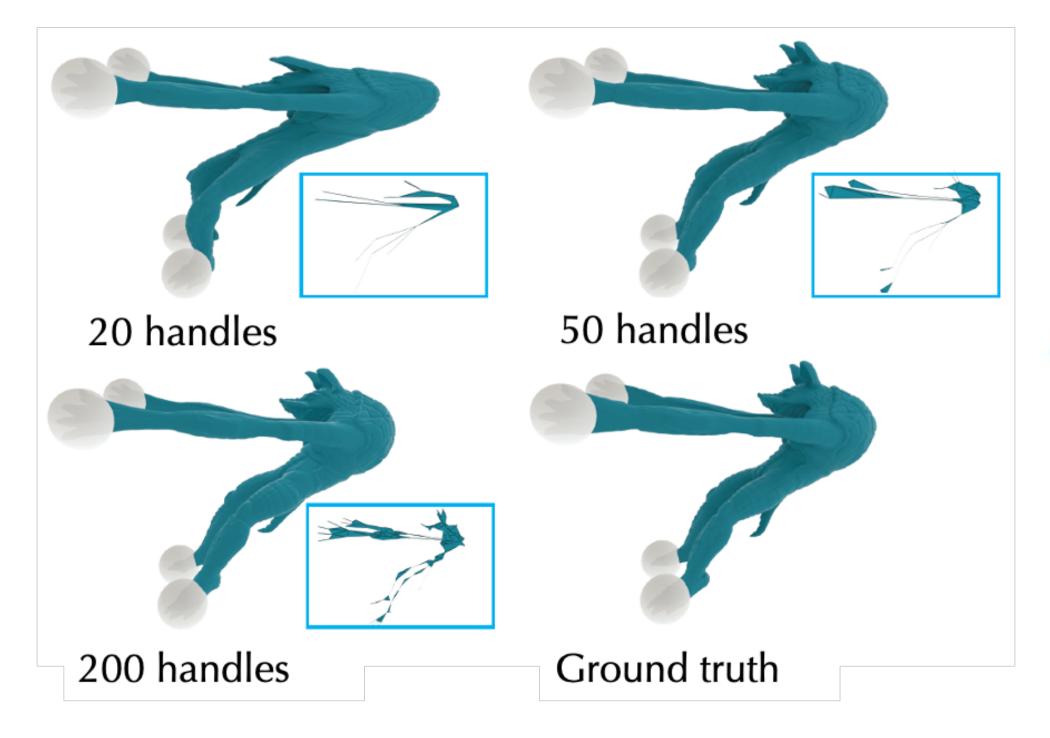
Nonlinear Elasticity, Linear Modes

$$\min_{z} \frac{1}{2} ||X + Uz - \tilde{x}^n||_M^2 + h^2 \sum_{z} P(X + Uz)$$

Issue 3: modes computed at rest shape (using $\nabla^2 P(X)$) can result in artificial stiffening at large deformation

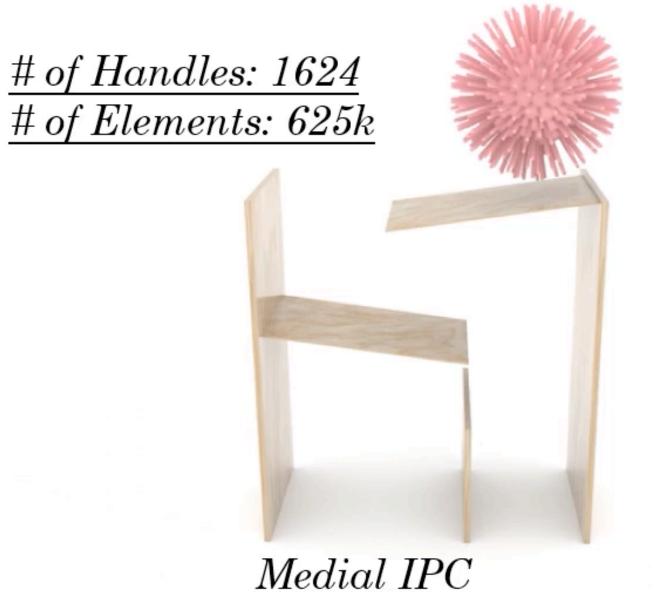
Solution 1: use simulated poses/deformed configurations as data, and perform PCA to construct ${\it U}$

Solution 2: use nonlinear modes u = f(z) where f is a nonlinear function


e.g. in rigid body dynamics, $u = f(\theta)$ is nonlinear

Use modal derivatives to construct a quadratic function u = f(z) [*]

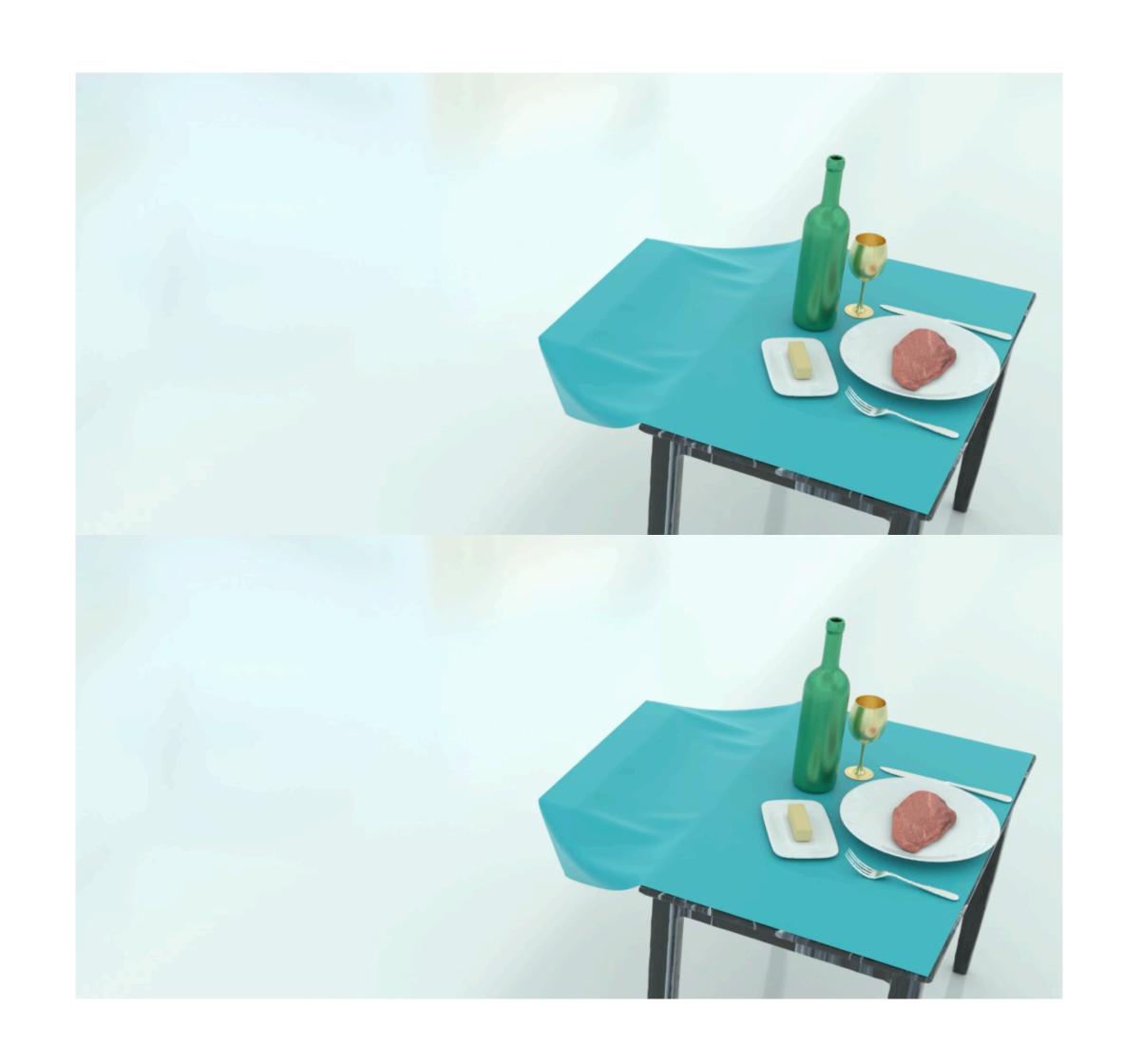
Use neural networks to learn u = f(z)


Remarks: Affine modes are linear modes, and are spatially linear; PCA and Eigen modes are linear modes, but can be spatially nonlinear.

Results from Medial IPC [Lan et al. 2021]

Puffer Ball x 1

36× speedup



Relevant Upcoming Presentations

- Oct 31
 - Wang et al. Botanical Materials Based on Biomechanics. SIGGRAPH 2017 (Presenter: Olga Guṭan)
- Nov 16
 - Sharp et al. Data-Free Learning of Reduced-Order Kinematics. SIGGRAPH 2023 (Presenter: Zoë Marschner)
- Nov 28
 - Panuelos et al. PolyStokes: A Polynomial Model Reduction Method for Viscous Fluid Simulation. SIGGRAPH 2023 (Presenter: Olga Guţan)

Next Lecture: Codimensional Solids

Image Sources

- https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013anna-university/
- https://en.wikipedia.org/wiki/Young%27s_modulus
- http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotesmodelReduction.pdf