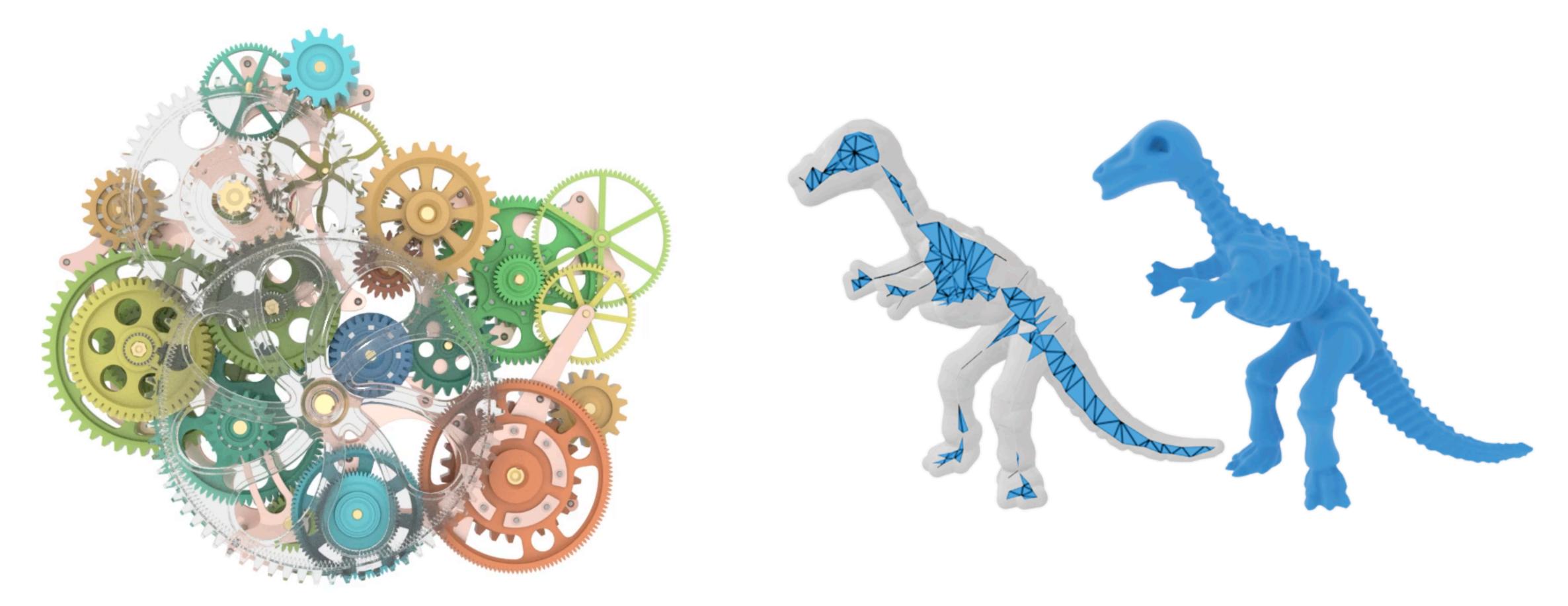
**Instructor: Minchen Li** 



### Lec 13: Reduced Order Models

15-769: Physically-based Animation of Solids and Fluids (F23)

### Recap: Frictional Self-Contact

Idea: Approximating Contact Forces as Conservative Forces

$$\begin{split} &\int_{\partial\Omega^0} Q_i(\mathbf{X},t) T_i(\mathbf{X},t) ds(\mathbf{X}) \\ &= \int_{\Gamma_D} Q_i(\mathbf{X},t) T_{D|i}(\mathbf{X},t) ds(\mathbf{X}) + \int_{\Gamma_N} Q_i(\mathbf{X},t) T_{N|i}(\mathbf{X},t) ds(\mathbf{X}) \\ &+ \int_{\Gamma_C} Q_i(\mathbf{X},t) T_{C|i}(\mathbf{X},t) ds(\mathbf{X}) + \int_{\Gamma_C} Q_i(\mathbf{X},t) T_{F|i}(\mathbf{X},t) ds(\mathbf{X}). \end{split}$$
 (Here  $\Gamma_C$  can overlap with  $\Gamma_D$  or  $\Gamma_N$ )

# Recap: Normal Self-Contact

#### **Barrier Potential**

$$\mathbf{T}_{C}(\mathbf{X}, t) = -\frac{\partial b(\min_{\mathbf{X}_{2} \in \Gamma_{C} - \mathcal{N}(\mathbf{X})} \|\mathbf{x}(\mathbf{X}, t) - \mathbf{x}(\mathbf{X}_{2}, t)\|, \hat{d})}{\partial \mathbf{x}(\mathbf{X}, t)}$$

where  $\mathcal{N}(\mathbf{X}) = \{\mathbf{X}_N \in \mathbb{R}^d \mid \|\mathbf{X}_N - \mathbf{X}\| < r\}$  is an infinitesimal circle around X with the radius r sufficiently small to avoid unnecessary contact forces between a point and its geodesic neighbors.

Need 
$$\hat{d} \to 0$$
,  $r \to 0$ , and  $\hat{d}/r \to 0$ .

#### **Barrier Potential:**

$$\int_{\Gamma_C} \frac{1}{2} b(\min_{\mathbf{X}_2 \in \Gamma_C - \mathcal{N}(\mathbf{X})} \|\mathbf{x}(\mathbf{X}, t) - \mathbf{x}(\mathbf{X}_2, t)\|, \hat{d}) ds(\mathbf{X}) \implies \int_{\Gamma_C} \frac{1}{2} \max_{e \in \mathcal{E} - I(\mathbf{X})} b(d^{\text{PE}}(\mathbf{x}(\mathbf{X}, t), e), \hat{d}) ds(\mathbf{X})$$

**But** min() is non-smooth!

#### b() is monotonically decreasing,

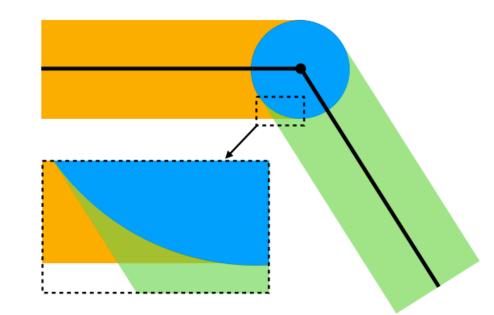
$$\int_{\Gamma_C} \frac{1}{2} \max_{e \in \mathcal{E} - I(\mathbf{X})} b(d^{\text{PE}}(\mathbf{x}(\mathbf{X}, t), e), \hat{d}) ds(\mathbf{X})$$

$$\max(a_1, a_2, ..., a_n) \approx (a_1^p + a_2^p + ... + a_n^p)^{\frac{1}{p}}$$

Accurate when  $p \to \infty$ : Expensive!

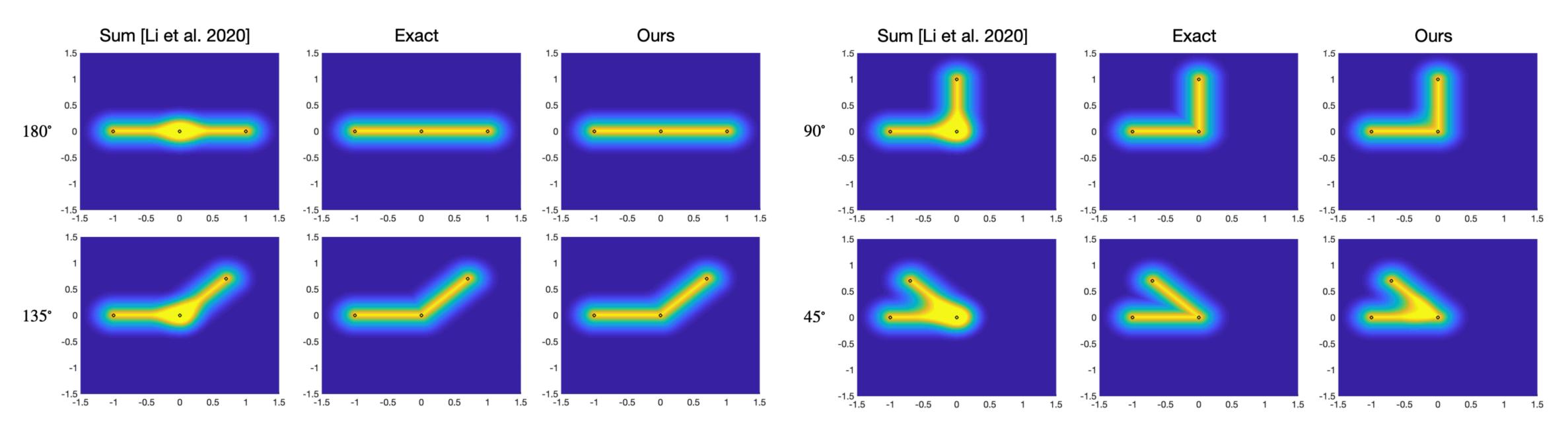
### Recap: Normal Self-Contact

#### **Smoothly Approximating the Barrier Potential**



Can subtract the duplicate point-point barrier [Li et al. 2023]:

$$\Psi_c(x) = \sum_{e \in E \setminus x} b(d(x, e), \hat{d}) - \sum_{x_2 \in V_{int} \setminus x} b(d(x, x_2), \hat{d}) \approx \max_{e \in E \setminus x} b(d(x, e), \hat{d})$$



Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, Danny M. Kaufman.

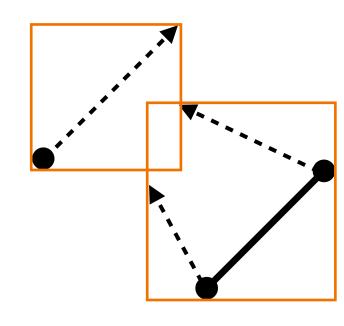
Convergent Incremental Potential Contact. Arxiv 2307.15908.

### Recap: Broad Phase CCD

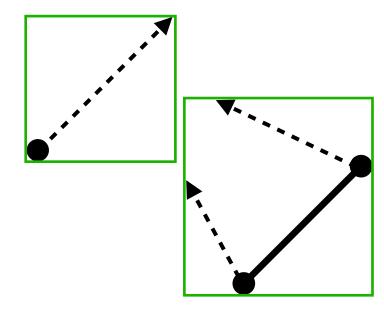
- Step 1: query proximal primitive pairs using spatial data structures:
  - Spatial Hash
  - Bounding Box Hierarchy (BVH)

•

• Step 2: Check bounding box overlap:



Case 1: needs narrow phase



Case 2: can skip

# Recap: Narrow Phase CCD Additive CCD [Li et al. 2021]

Taking a point-edge pair as an example, the key insight of ACCD is that, given the current positions  $\mathbf{p}$ ,  $\mathbf{e}_0$ ,  $\mathbf{e}_1$  and search directions  $\mathbf{d}_p$ ,  $\mathbf{d}_{e0}$ ,  $\mathbf{d}_{e1}$ , its TOI can be calculated as

$$\alpha_{\text{TOI}} = \frac{\|\mathbf{p} - ((1 - \lambda)\mathbf{e}_0 + \lambda\mathbf{e}_1)\|}{\|\mathbf{d}_p - ((1 - \lambda)\mathbf{d}_{e0} + \lambda\mathbf{d}_{e1})\|},$$

assuming  $(1 - \lambda)\mathbf{e}_0 + \lambda\mathbf{e}_1$  is the point on the edge that  $\mathbf{p}$  will first collide with. The issue is that we do not a priori know  $\lambda$ . But we can derive a lower bound of  $\alpha_{\text{TOI}}$  as

$$\alpha_{\text{TOI}} \ge \frac{\min_{\lambda \in [0,1]} \|\mathbf{p} - ((1-\lambda)\mathbf{e}_0 + \lambda\mathbf{e}_1)\|}{\|\mathbf{d}_p\| + \|(1-\lambda)\mathbf{d}_{e0} + \lambda\mathbf{d}_{e1}\|}$$
$$\ge \frac{d^{\text{PE}}(\mathbf{p}, \mathbf{e}_0, \mathbf{e}_1)}{\|\mathbf{d}_p\| + \max(\|\mathbf{d}_{e0}\|, \|\mathbf{d}_{e1}\|)} = \alpha_l$$

$$\bar{p} \leftarrow \sum_{i} p_i/4$$
**for**  $i$  in  $\{0, 1, 2, 3\}$  **do**
 $p_i \leftarrow p_i - \bar{p}$ 

#### **Algorithm:**

Make a local copy of x

$$\alpha \leftarrow 0$$

While distance not close enough Calculate lower bound  $\alpha_l$ 

$$x \leftarrow x + \alpha_l p$$

$$\alpha \leftarrow \alpha + \alpha_{l}$$

Return  $\alpha$ 

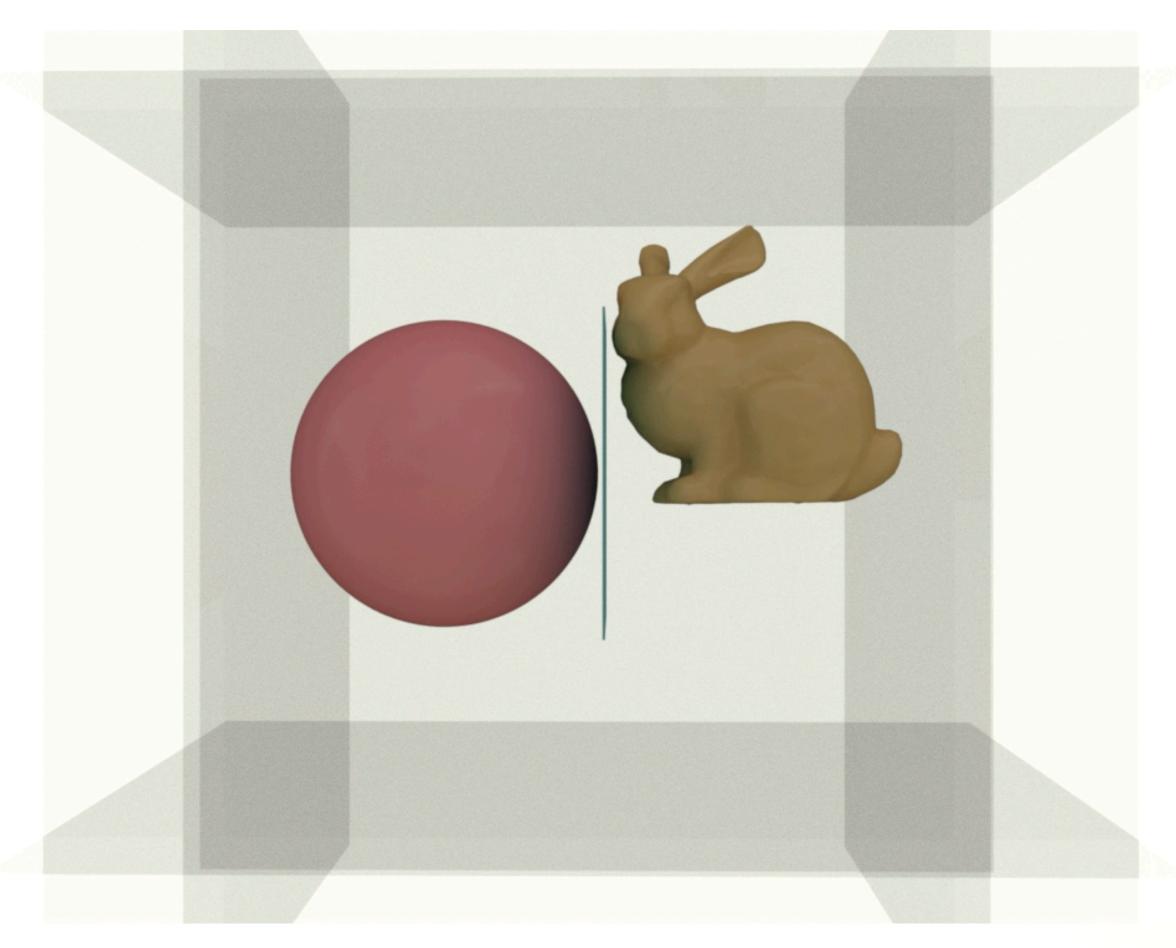
Only need to evaluate distances;

More robust than root-finding;

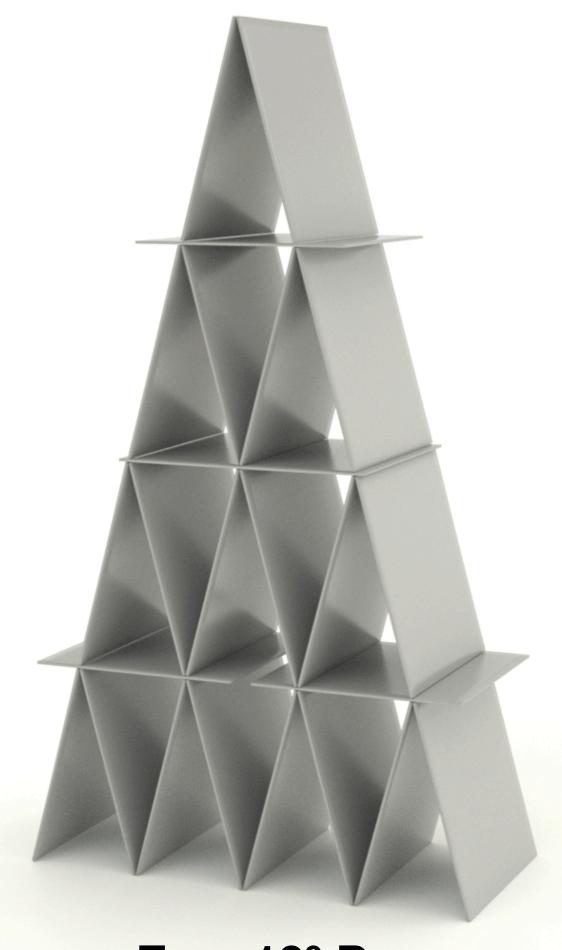
Generalize to higher-order primitives.

# Results: Elastic Body Simulation

With Guarantees of Nonpenetration, Non-inversion, and Convergence





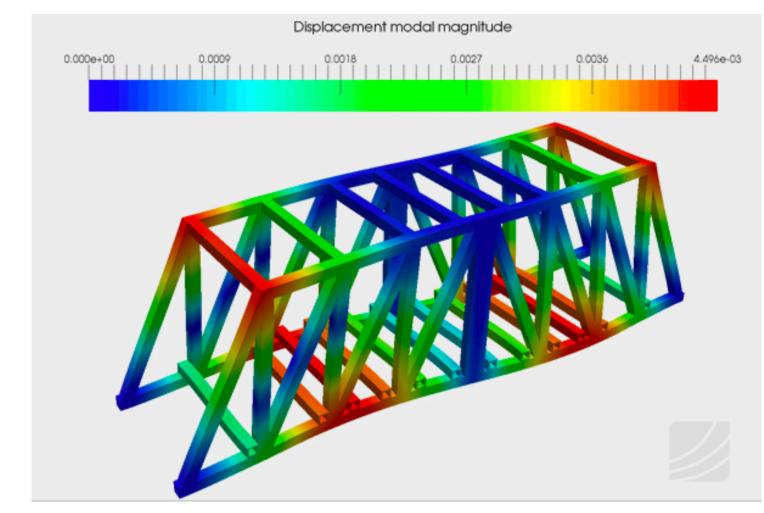


 $E = ~10^9 Pa$ 

#### Finite Element Method (FEM)

| Material <b>◆</b>             | Young's<br>modulus +<br>(GPa) |
|-------------------------------|-------------------------------|
| Aluminium ( <sub>13</sub> Al) | 68                            |
| Bone, human cortical          | 14                            |
| Gold                          | 77.2                          |
| Wood, red maple               | 9.6 – 11.3                    |
| High-strength concrete        | 30                            |

Applications:

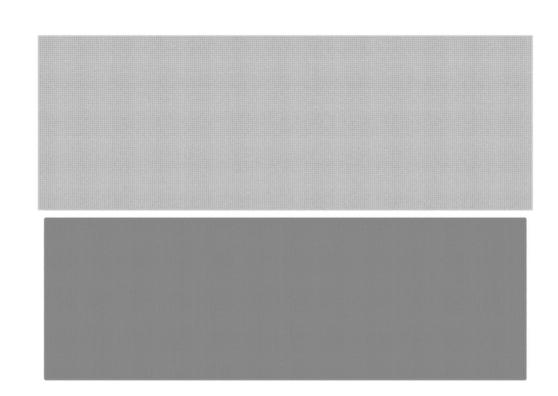


Structural Analysis

Can compute stress distribution using FEM

$$\mathbf{s.t.} - \nabla_{\mathbf{x}} \Psi + f^{\mathbf{ext}} = 0$$

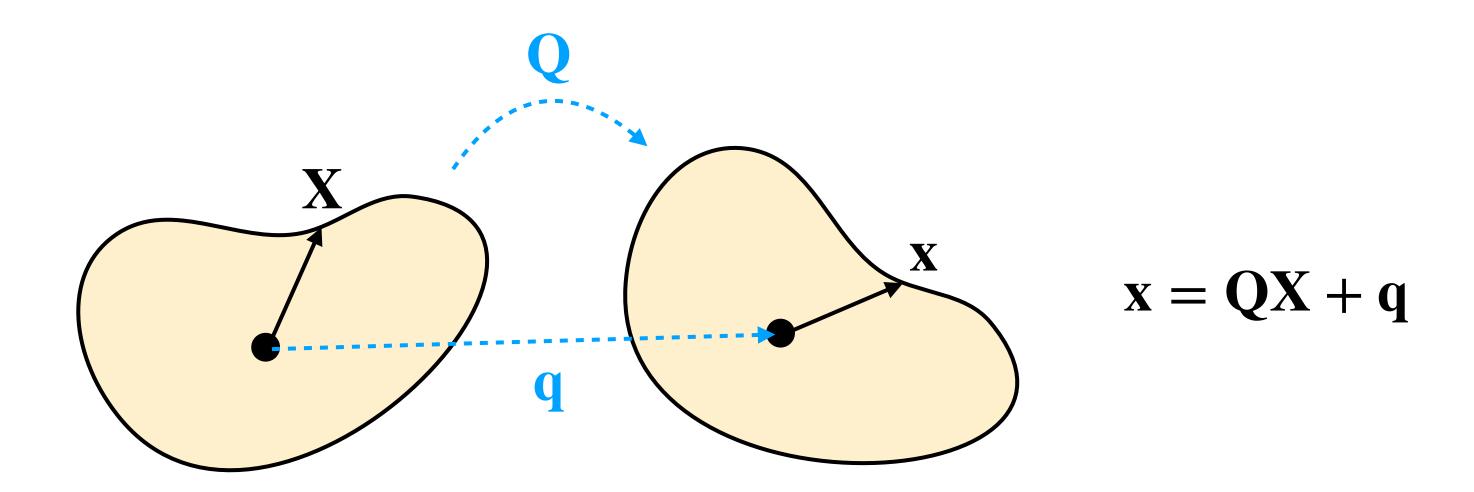
volume < target



#### **Rigid Body Representation**

If only care about the motions,

Can simply track rotation Q and translation q per body!



Constant deformation gradient per body, No volumetric discretization needed!

#### **Rigid Body Dynamics: Derivation**

#### **Full order dynamics:**

$$\min_{x} \frac{1}{2} ||x - \tilde{x}^n||_M^2 + h^2 \sum_{x} P(x)$$

#### Reduced order DOF:

$$\mathbf{x} = \bar{X}Q + \bar{S}q \in \mathbb{R}^{3n}$$

$$\mathbf{x} = \mathbf{Q}\mathbf{X} + \mathbf{q} \in \mathbb{R}^{3} \iff Q \in \mathbb{R}^{9m}, \ \bar{X} \in \mathbb{R}^{3n \times 9m}$$

$$q \in \mathbb{R}^{3m}, \ \bar{S} \in \mathbb{R}^{3n \times 3m}$$

#### Reduced order dynamics (from subspace optimization):

$$\min_{Q,q} \frac{1}{2} \|\bar{X}Q + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \sum P(\bar{X}Q + \bar{S}q) \quad \text{s.t.} \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I} \quad \forall \mathbf{Q} \quad (\text{or } f(Q) = 0)$$
 
$$\Longrightarrow$$
 
$$\bar{X}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{X}^T \nabla P(\bar{X}Q + \bar{S}q) + (\nabla f(Q))^T \lambda = 0$$
 Alternative der 
$$\bar{S}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{S}^T \nabla P(\bar{X}Q + \bar{S}q) = 0$$
 • Linear and A Momentum of the following of the properties of the following of the following

#### **Alternative derivations:**

- Lagrangian Mechanics;
- Linear and Angular **Momentum Conservations;**

#### Rigid Body Dynamics: Mass Matrix and Inertia Tensor

Reduced order dynamics (from subspace optimization):

$$\bar{X}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{X}^T \nabla P(\bar{X}Q + \bar{S}q) + (\nabla f(Q))^T \lambda = 0$$

$$\bar{S}^T M(\bar{X}Q + \bar{S}q - \tilde{x}^n) + h^2 \sum \bar{S}^T \nabla P(\bar{X}Q + \bar{S}q) = 0$$

$$f(Q) = 0$$

•  $\bar{X}^T M \bar{X}$  is the mass matrix of Q related to inertia tensor

Calculating  $\bar{X}^T M \bar{X}$  without volumetric discretization:

- 1. Convert to continuous form  $\int_{\Omega^0} \rho \mathbf{X} \mathbf{X}^T d\mathbf{X}$
- 2. Transform to surface integral using Divergence Theorem
- 3. Discretize the surface integral

#### Rigid Body Dynamics: Change of Variable

Reduced order dynamics (from subspace optimization):

$$\min_{Q,q} \frac{1}{2} ||\bar{X}Q + \bar{S}q - \tilde{x}^n||_M^2 + h^2 \sum P(\bar{X}Q + \bar{S}q) \quad \text{s.t.} \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I} \quad \forall \mathbf{Q} \quad (\text{or } f(Q) = 0)$$

Use rotation vector  $\theta$ :

$$\min_{\theta,q} \frac{1}{2} ||\bar{X}R(\theta) + \bar{S}q - \tilde{x}^n||_M^2 + h^2 \sum_{M} P(\bar{X}R(\theta) + \bar{S}q)$$
 Unconstrained! 6 DOF per body!

Rodrigues' Rotation Formula:

$$\mathcal{R}(\theta) = \operatorname{Id} + \sin(\|\theta\|) \left[ \frac{\theta}{\|\theta\|} \right] + (1 - \cos(\|\theta\|)) \left[ \frac{\theta}{\|\theta\|} \right]^2$$
 Highly nonlinear!

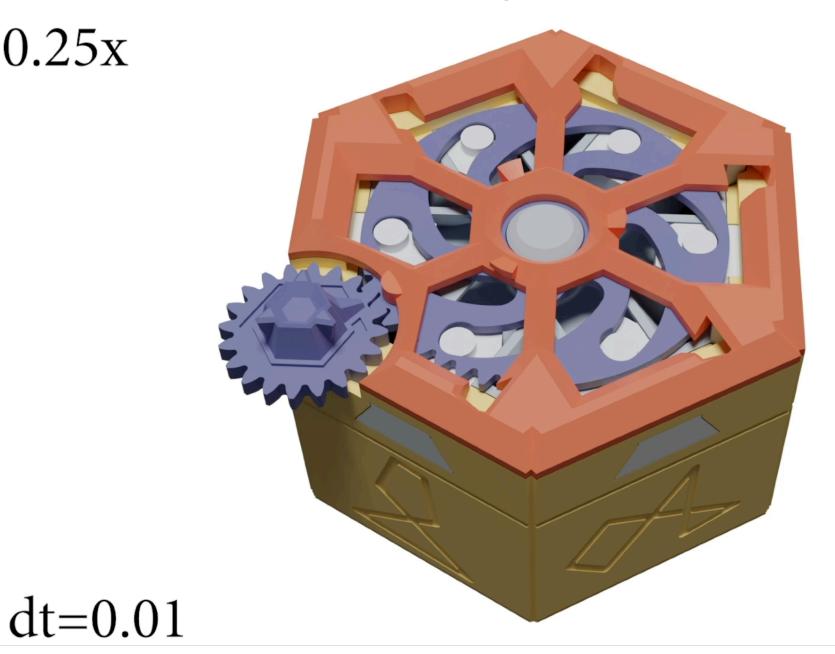
### Rigid Body Dynamics: Frictional Contact via IPC [Li et al. 2020]

Reduced order dynamics (from subspace optimization):

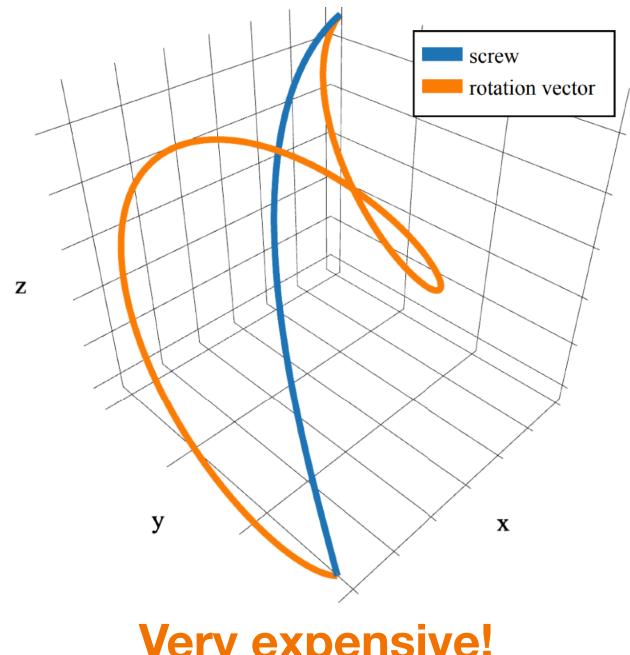
 $\min_{\theta,q} \frac{1}{2} \|\bar{X}R(\theta) + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \sum_{\bullet} P(\bar{X}R(\theta) + \bar{S}q) \quad \text{But line search is on } \theta \text{, and } x(\theta) \text{ is nonlinear } x(\theta) = 0$ 

Just include IPC energies here

0.25x

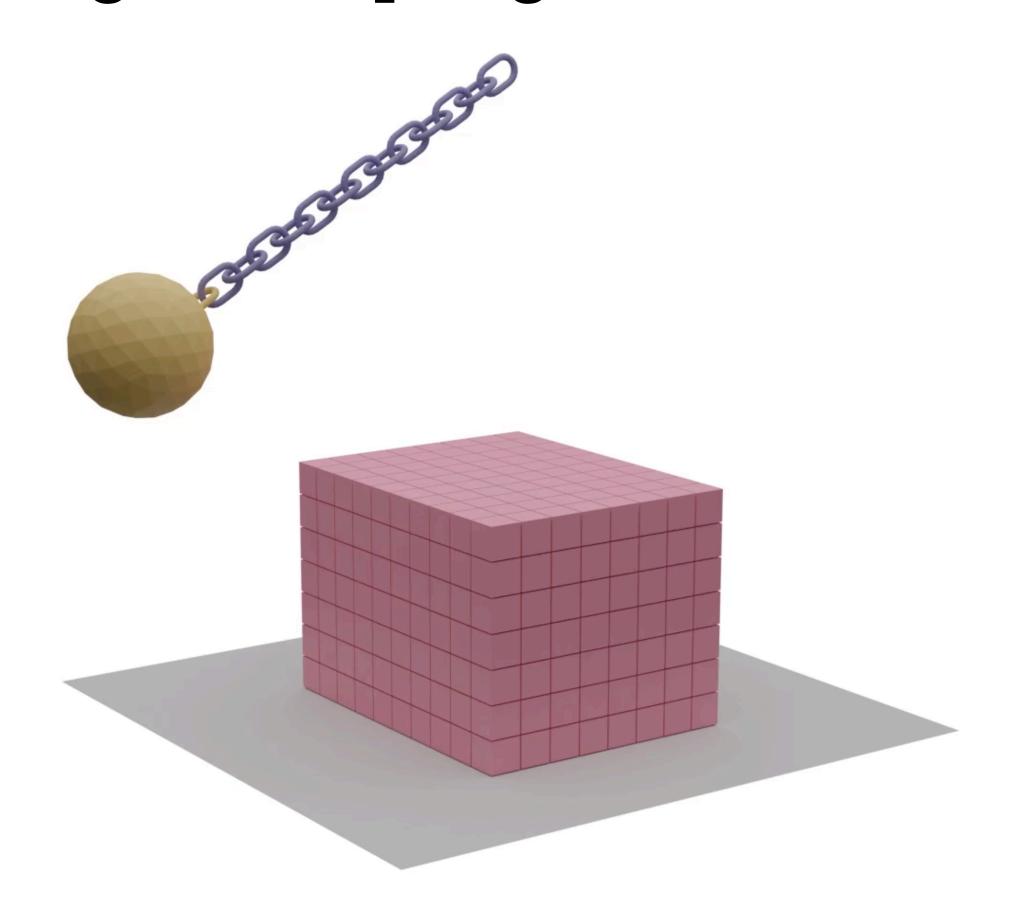


So CCD is on nonlinear trajectories:



Very expensive!

Rigid-IPC [Ferguson et al. 2021] vs IPC [Li et al. 2020]



| Example           | runtime (s)<br>(IPC) | runtime (s)<br>(Rigid) | speed-up | iterations<br>(IPC) | iterations<br>(Rigid) |
|-------------------|----------------------|------------------------|----------|---------------------|-----------------------|
| Pendulum          | 339.7                | 133.1                  | 2.6x     | 10K                 | 3K                    |
| Double pendulum   | 914.0                | 1559.9                 | 0.6x     | 12K                 | 4K                    |
| Arch (25 stones)  | 26.5                 | 55.8                   | 0.5x     | 2K                  | 2K                    |
| Arch (101 stones) | 238.3                | 487.8                  | 0.5x     | 4K                  | 5K                    |
| Wrecking ball     | 7179.8               | 5748.1                 | 1.2x     | 9K                  | 18K                   |

Rigid-IPC performs well for complex geometries

#### **Enforcing Rigidity via Penalty Method**

Reduced order dynamics (from subspace optimization):

$$\min_{Q,q} \frac{1}{2} \|\bar{X}Q + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \boxed{\sum P(\bar{X}Q + \bar{S}q)} \quad \text{s.t.} \quad \mathbf{Q}^T \mathbf{Q} = \mathbf{I} \ \forall \mathbf{Q} \ (\text{or} \ f(Q) = 0)$$

$$\boxed{\mathbf{Don't \ need \ elasticity}}$$

Reduced order dynamics with penalty method:

$$\min_{Q,q} \frac{1}{2} ||\bar{X}Q + \bar{S}q - \tilde{x}^n||_M^2 + h^2 \sum_{M} P(\bar{X}Q + \bar{S}q)$$

Use elasticity with large Young's modulus

— the strain energy  $\Psi$  is effectively a penalty function for

12 DOF per body, still significantly reduced

$$x = \bar{X}Q + \bar{S}q$$
 is linear w.r.t. both  $Q$  and  $q \rightarrow$  linear CCD

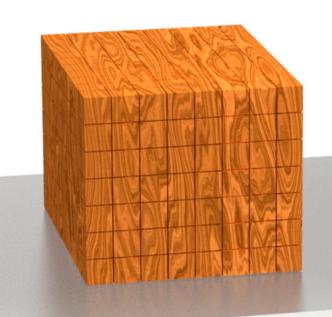
A stiff  $\Psi$  won't make the problem harder with stiff IPC energies

### Affine Body Dynamics (ABD)

$$\min_{Q,q} \frac{1}{2} \|\bar{X}Q + \bar{S}q - \tilde{x}^n\|_M^2 + h^2 \sum P(\bar{X}Q + \bar{S}q)$$
 Use elasticity with large Young's modulus

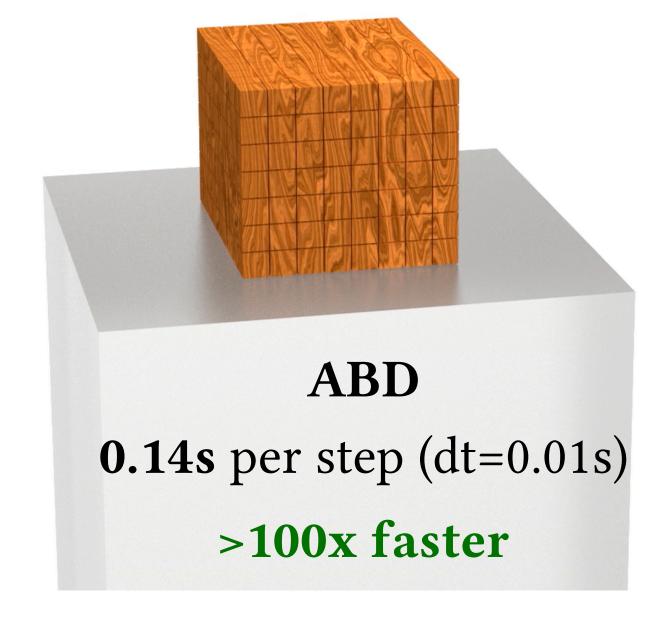






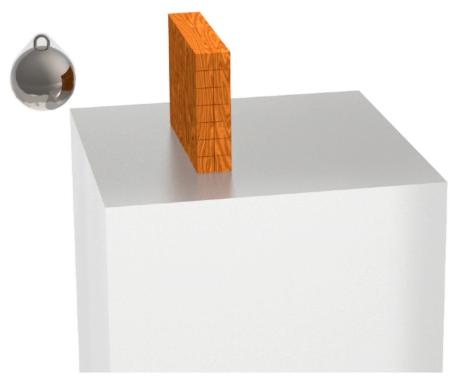
Rigid-IPC **17.6s** per step (dt=0.01s)

14K triangles 575 bodies



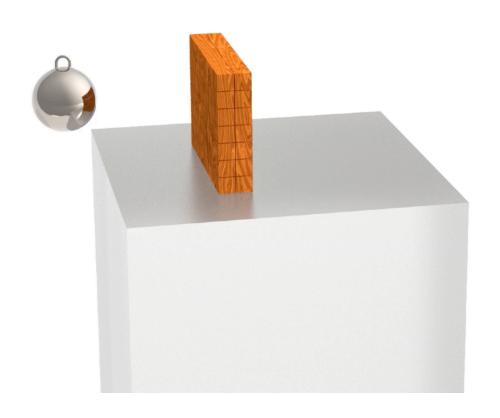
**Bullet v.s. ABD** 

3.5K triangles142 bodies



#### Bullet

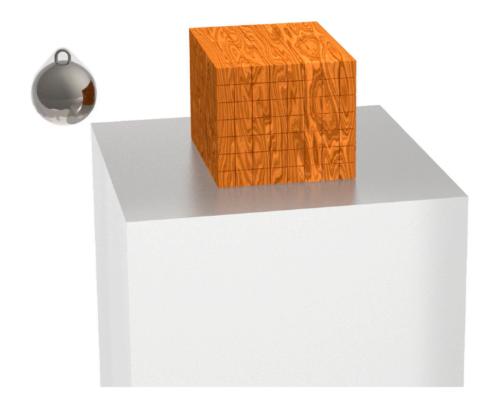
58ms per 1/240s step 82ms per 1ms step



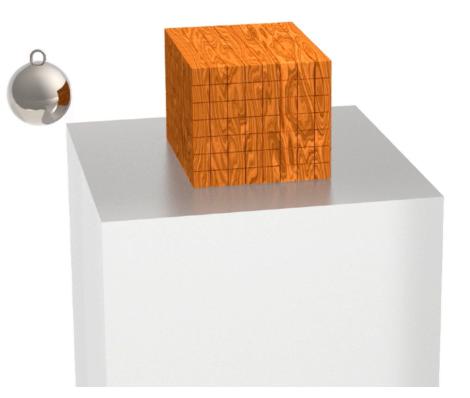
**ABD** 

41ms per 1/240s step 19ms per 1ms step >4x faster

11K triangles562 bodies



809ms per 1/240s step 804ms per 1ms step



328ms per 1/240s step 102ms per 1ms step >8x faster

## ABD in Another Perspective

X:

#### **Affine Deformation Modes**

$$\mathbf{x} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{X} + \begin{bmatrix} e \\ f \end{bmatrix}$$

$$\Delta a$$





0.3



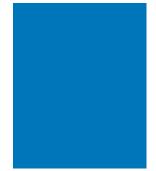
0.8

1.3

DOF: a, b, c, d, e, f

$$\Delta \epsilon$$







$$\mathbf{x} = A \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = aA_1 + bA_2 + \dots$$

$$\Delta b$$









Deformation

modes (linearly independent displacement fields)

#### Linear Modal Analysis

$$\mathbf{x} = A \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} \quad \begin{array}{l} \textbf{Deformation} \text{ (linearly independent displacement fields)} \\ \textbf{modes} \\ \textbf{modes} \\ \textbf{(linearly independent displacement fields)} \\ \textbf{Explain the problem of the problem o$$

Assume linear elasticity problem:  $M\ddot{u} + Ku = f$  s.t. Sx = 0 (Dirichlet BC)

Intuition: Meaningful deformation modes are those don't generate large forces

Can solve the generalized Eigenvalue problem to find them:  $\bar{K}y = \lambda \bar{M}y$ 

(where  $ar{K}$  and  $ar{M}$  do not account for BC nodes)

(Take the Eigenvectors with smallest Eigenvalues as modes.)

#### Linear Modal Analysis: Time Integration

$$\mathbf{x} = A \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} \quad \begin{array}{l} \textbf{Deformation} \text{ (linearly independent displacement fields)} \\ \textbf{Can solve } \bar{K}y = \lambda \bar{M}y \text{ and take Eigenvectors} \\ \textbf{with the smallest Eigenvalues as more modes.} \\ \hline \textbf{The Eigenvectors will be orthonormal w.r.t. } \bar{M}, \text{ i.e. } (y^i)^T M y^j = \delta_{ij}. \\ \hline \end{array}$$

Now let u=x-X=Uz, where  $z\in\mathbf{R}^k$  are the reduced DOF,  $U\in\mathbb{R}^{3n\times k}$  formed by the Eigenvectors

Plugging in Mii + Ku = f, ignoring BCs for now:

$$MU\ddot{z}+KUz=f$$
  $\Lambda\in\mathbb{R}^{k imes k}$  is a diagonal matrix of Eigenvalues  $U^TMU\ddot{z}+U^TMU\Lambda z=U^Tf$  Left-multiply  $U^T$  on both sides  $\ddot{z}+\Lambda z=U^Tf$  Diagonal system! Super fast!

#### Linear Modal Analysis: Effectiveness

Works well for small deformations:

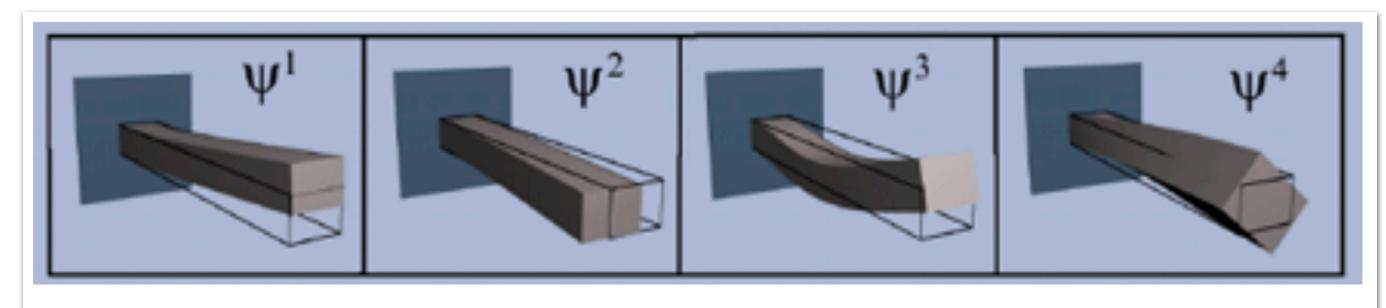


Figure 2: Linear modes for a cantilever beam.

Consistent with our knowledge of linear elasticity

#### **However:**

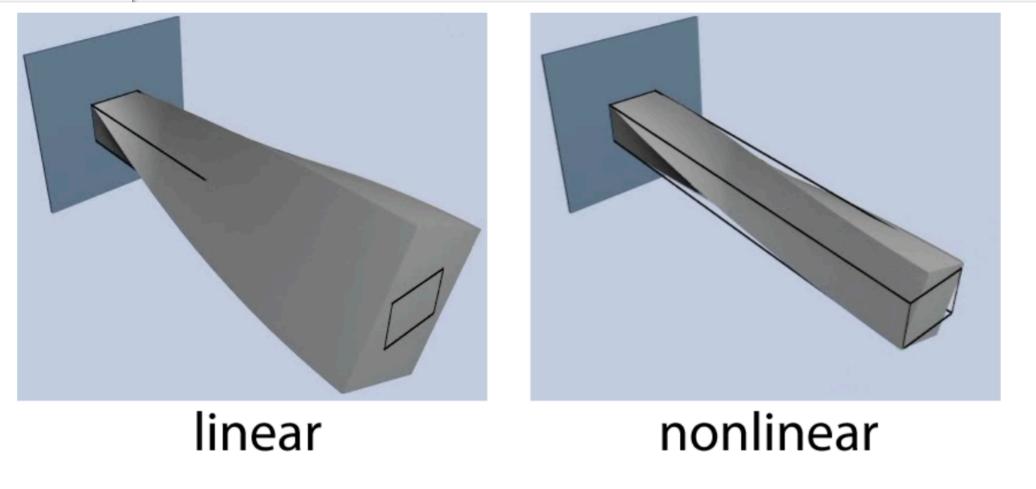


Figure 3: Model reduction applied to a linear and nonlinear system.

#### **Nonlinear Elasticity, Linear Modes**

$$M\ddot{u} + f^{int}(u) = f$$
 or equivalently, using Incremental Potential:  $\min_{x} \frac{1}{2} ||x - \tilde{x}^n||_M^2 + h^2 \sum_{x} P(x)$ 

Plugging in 
$$u = Uz$$
:  $\min_{z} \frac{1}{2} ||X + Uz - \tilde{x}^n||_M^2 + h^2 \sum_{z} P(X + Uz)$  (Can compute U using  $\nabla^2 P(X)$ )

Gradient: 
$$U^TM(X + Uz - \tilde{x}^n) + h^2 \sum U^T \nabla P(X + Uz)$$

Hessian: 
$$U^TMU + h^2 \sum U^T \nabla^2 P(X + Uz)U$$

Issue 1: Hessian can be dense!

Solution: use locally supported modes, e.g. Cage-based deformation, Medial Axis Mesh [Lan et al. 2021]

Issue 2: Calculating  $\nabla P$  and  $\nabla^2 P$  are still slow (requiring full space computations)

Solution: use numerical integration to approximate Gradient and Hessian, minimizing the number of quadratures [An et al. 2008]

#### Nonlinear Elasticity, Linear Modes

$$\min_{z} \frac{1}{2} ||X + Uz - \tilde{x}^n||_M^2 + h^2 \sum_{z} P(X + Uz)$$

Issue 3: modes computed at rest shape (using  $\nabla^2 P(X)$ ) can result in artificial stiffening at large deformation

Solution 1: use simulated poses/deformed configurations as data, and perform PCA to construct  ${\it U}$ 

Solution 2: use nonlinear modes u = f(z) where f is a nonlinear function

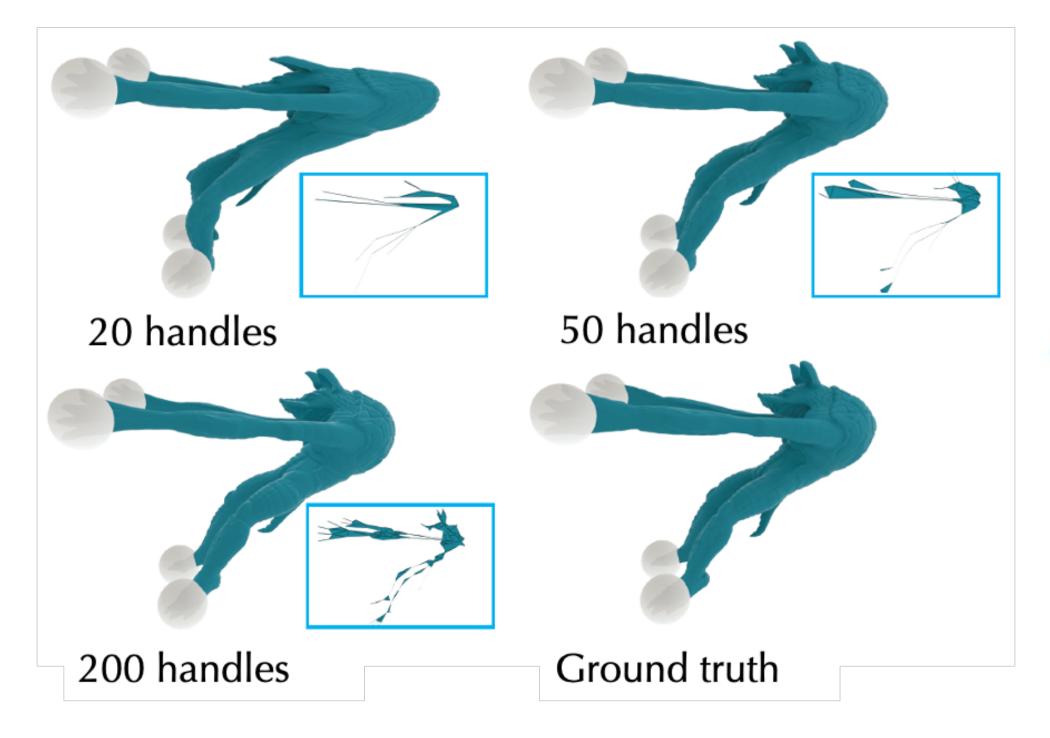
e.g. in rigid body dynamics,  $u = f(\theta)$  is nonlinear

Use modal derivatives to construct a quadratic function u = f(z) [\*]

Use neural networks to learn u = f(z)

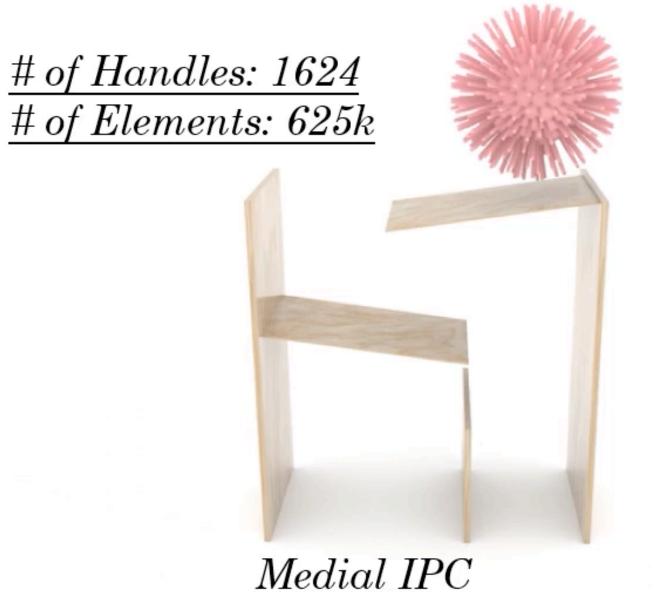
Remarks: Affine modes are linear modes, and are spatially linear; PCA and Eigen modes are linear modes, but can be spatially nonlinear.

Results from Medial IPC [Lan et al. 2021]



#### Puffer Ball x 1

36× speedup

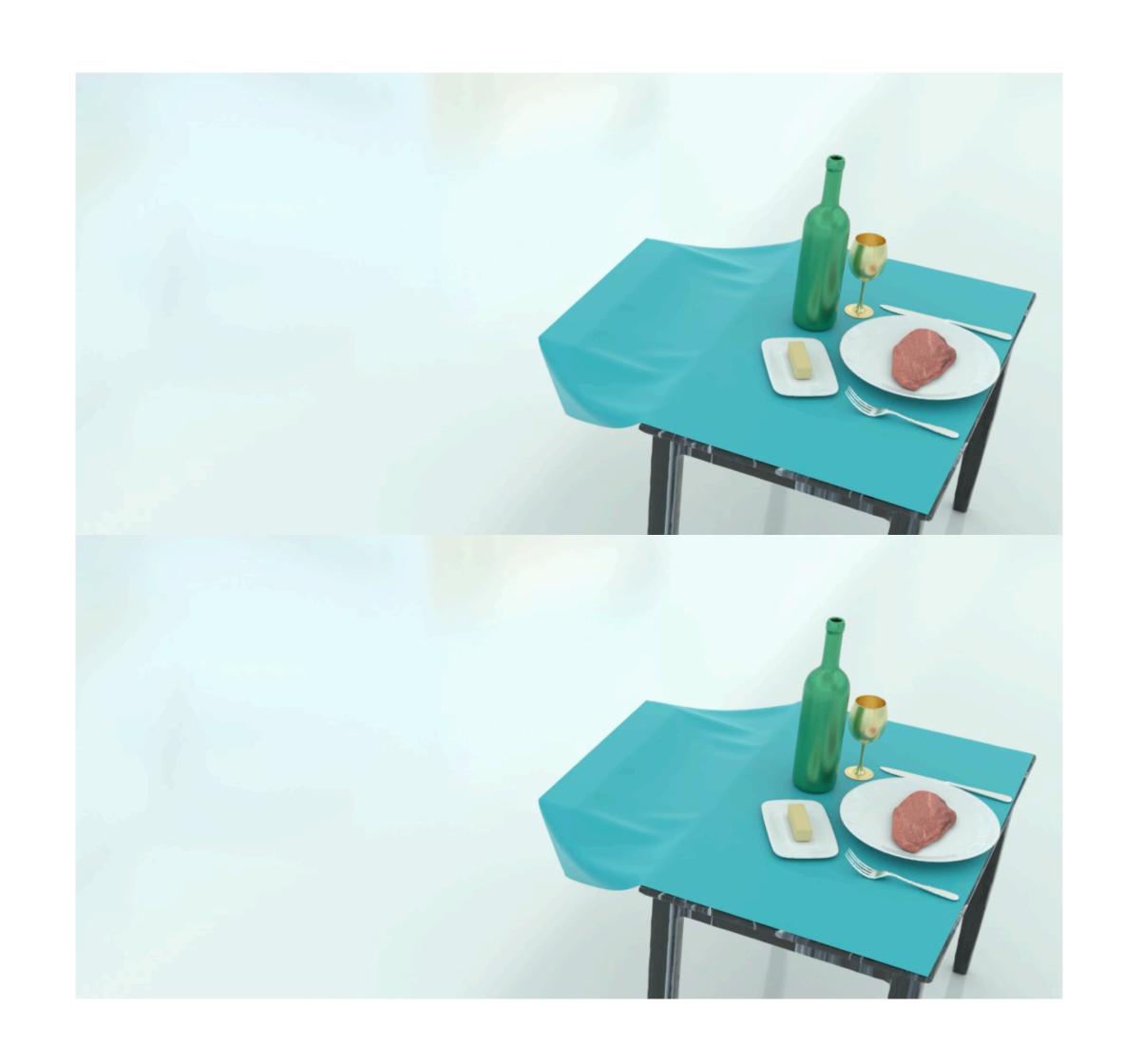




### Relevant Upcoming Presentations

- Oct 31
  - Wang et al. Botanical Materials Based on Biomechanics. SIGGRAPH 2017 (Presenter: Olga Guṭan)
- Nov 16
  - Sharp et al. Data-Free Learning of Reduced-Order Kinematics. SIGGRAPH 2023 (Presenter: Zoë Marschner)
- Nov 28
  - Panuelos et al. PolyStokes: A Polynomial Model Reduction Method for Viscous Fluid Simulation. SIGGRAPH 2023 (Presenter: Olga Guţan)

### Next Lecture: Codimensional Solids



## Image Sources

- https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013anna-university/
- https://en.wikipedia.org/wiki/Young%27s\_modulus
- http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotesmodelReduction.pdf